검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 846

        185.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The 3-isobutyl-1-methylxanthine (IBMX) is non-selective phosphodiesterase and is able to prevent resumption of meiosis by maintaining elevated cyclic AMP (cAMP) concentrations in the oocyte. The present study was conducted to analyze: (1) nuclear maturation (examined by the Hoechst staining), (2) whether cytoplasmic maturation (examined by the intracellular glutathione (GSH) concentration) of porcine oocytes is improved during meiotic arrest after prematuration (22 h) with IBMX. Before in vitro maturation (IVM), oocytes were treated with 1 mM IBMX for 22 h. After 22 h of pre-maturation, the higher rate of IBMX treated group oocytes were arrested at the germinal vesicle (GV) stage (42.3%) than control IVM oocytes (10.1%). It appears that the effect of IBMX on the resumption of meiosis has shown clearly. In the end of IVM, the reversibility of the IBMX effect on the nuclear maturation has been corroborated in this study by the high proportions of MII stage oocytes (72.5%) reached after 44 h of IVM following the 22 h of inhibition. However, intracellular GSH concentrations were lower in the oocytes treated with IBMX than the control oocytes (6.78 and 12.94 pmol/oocyte, respectively). These results demonstrate that cytoplasmic maturation in porcine oocytes pre-treated with IBMX for 22 h did not equal that of control oocytes in the current IVM system. These results indicate that pre-maturation with IBMX for 22 h may not be beneficial in porcine IVM system.
        4,000원
        186.
        2012.09 구독 인증기관 무료, 개인회원 유료
        The present study was conducted to develop a simple method for porcine oocyte maturation without CO2 regulation. In experiment 1, we evaluated that the effect of CO2 non-supplement on porcine oocyte maturation. Cumulusoocyte complexes (COCs) were collected from 2~6 mm follicles and divided into three groups (Control, tube-CO2, and tube-non-CO2). For control, COCs were cultured in 4-well multidish in a CO2 incubator. For tube-CO2, COCs were cultured in a round-bottom tube in a CO2 incubator, and for tube-non-CO2, COCs were cultured in a round-bottom tube sealed tightly without CO2 supplement in a dry incubator. The proportion of oocytes reached to metaphase II (M-II) was not significantly different among three groups (87.9% to 91.4%). In experiment 2, we evaluated the effect of CO2 non-supplement during oocyte maturation on development of embryos. Oocytes with a polar body were divided into two groups (Control and tube-non-CO2) and applied 1.1 kV/cm or 1.2 kV/cm voltages for parthenogenetic activation. After activation, embryos were cultured for 6 days and examined the development. The proportion of embryos cleaved was not significantly different among treatment (86.3% to 91.5%). The proportion of embryo reached to blastocyst stage was not significantly different among treatment (13.9% to 25.2%). The cell number of blastocysts was not significantly different among treatment (29.0 to 32.4). In conclusion, oocytes cultured in a dry incubator without CO2 supplement have enough competence to development after parthenogenetic activation. These results would be useful for transporting oocytes or embryos a long distance.
        4,000원
        187.
        2012.09 구독 인증기관 무료, 개인회원 유료
        The present study was performed to identify the relationship between plasminogen activator (PA) and Heat Shock Protein-90 (HSP-90) in porcine uterus tissues during the estrous cycle. Porcine uterus tissues were obtained from preovulatory (Pre-Ov), post-ovulatory (Post-Ov) and early to mid-luteal (Early-mid L) stages. The protein was extracted from uterus tissue by using M-PER Mammalian Protein Extraction Reagent. Proteins were refined by RIPA Buffer and quantified by BCA methods. As results, t-PA expression was significantly (p<0.05) higher from pre-ovulatory(Epithelium tissue: 29,067 μg/μl, Myometrium tissue: 30,797 μg/μl) compared to the post-ovulatory stage(Epithelium tissue: 54,357 μg/μl, Myometrium tissue: 53,270 μg/μl) and early to mid-luteal stage(Epithelium tissue: 42,380 μg/μl, Myometrium tissue: 43,139 μg/μl). On the other hand, the uPA expression indicated higher from early to mid-luteal stage (Epithelium tissue: 0.02198 μg/μl, Myometrium tissue: 0.02412 μg/μl) than pre-ovulatory stage (Epithelium tissue: 0.01577 μg/μl, Myometrium tissue: 0.01531 μg/μl) and post-ovulatory stage(Epithelium tissue: 0.01414 μg/μl, Myometrium tissue: 0.01429 μg/μl). However, expression of u-PA did not differ from each estrous cycle in the epithelium tissue and myometrium tissue(p<0.05). Expression of HSP-90 was differ t-PA and u-PA from pre-ovulatory in Epithelium tissue(25,423 μg/μl) and early to mid-luteal stage in epithelium tissue(177,922 μg/μl) and myometrium tissue(26,664 μg/μl). These results suggest that HSP-90 and u-PA were related with change of uterus cycle according to the reformation of the tissues in porcine uterus.
        4,000원
        188.
        2012.09 구독 인증기관 무료, 개인회원 유료
        Male factor infertility or sub-fertility contributed half of all cases of infertility while the semen abnormality is the current topic of argument. Conventional analysis of semen showed poor correlation with fertility. Therefore, evaluation of current semen analysis method is necessary to improve standards of semen assessment. The goal of this study was to investigate that correlation between motion kinematic before and after capacitation and litter size in porcine. Sperm motility and kinematics were measure by computer-assisted sperm analysis (CASA). The motility of spermatozoa was positively correlated with curvilinear velocity (VCL), average path velocity (VAP), and mean amplitude of head lateral displacement (ALH) (p<0.05). Where as VCL positively correlated with VSL, VAP and ALH (p<0.01). Straight-line velocity (VSL) was positively correlated with VAP and ALH (p<0.01). VAP was significantly positively correlated with ALH (p<0.01). Also, we found significant positive correlation among variation of VSL, VAP and ALH (p<0.05). No motility and kinematic parameter are correlated with litter size. However, litter size was significantly correlated with breed (p<0.05). Our results suggested that analysis of sperm motility and kinematics using CASA is questionable for prediction of litter size. However, it has some practical importance to evaluate semen commercially.
        3,000원
        189.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Adult stem cell transplantation has been increased every year, because of the lack of organ donors for regenerative medicine. Therefore, development of reliable and safety cryopreservation and bio-baking method for stem cell therapy is urgently needed. The present study investigated safety of dimethyl sulfoxide (DMSO) such as common cryoprotectant on porcine bone marrow derived mesenchymal stem cells (pBM-MSCs) by evaluating the activation of Caspase-3 and -7, apoptosis related important signal pathway. pBM-MSCs used for the present study were isolated density gradient method by Ficoll-Paque Plus and cultured in A-DMEM supplemented 10% FBS at in 5% incubator. pBM-MSCs were cryopreserved in A-DMEM supplemented either with 5%, 10% or 20% DMSO by cooling rate at /min in a Kryo 360 (planner 300, Middlesex, UK) and kept into . Survival rate of cells after thawing did not differ between 5% and 10% DMSO but was lowest in 20% DMSO by 0.4% trypan blue exclusion. Activation of Caspase-3 and -7 by Vybrant FAM Caspase-3 and -7 Assay Assay Kit (Molecular probes, Inc.OR, USA) was analyzed with a flow cytometer. Both of cryopreserved and control groups (fresh pBM-MSCs) were observed after the activation of Caspase-3 and -7. The activation did not differ between 5% and 10% DMSO, but was observed highest in 20% DMSO. Therefore 5% DMSO can be possibly used for cell cryopreservation instead of 10% DMSO.
        4,000원
        190.
        2012.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to examine the effect of in vitro culture media on embryonic development of in vitro-matured (IVM) oocytes after parthenogenetic activation (PA) in pigs. Immature pig oocytes were matured in TCM-199 supplemented with porcine follicular fluid, cysteine, pyruvate, EGF, insulin, and hormones for the first 22 h and then further cultured in hormone-free medium for an additional 22~26 h. IVM oocytes were activated by electric pulses and cultured in porcine zygote medium-3 (PZM-3) and North Carolina State University-23 supplemented with essential and non-essential amino acids (NCSU-23aa). These media were further modified by supplementing 2.77 mM myo-inositol, 0.34 mM trisodium citrate, and -mercaptoethanol (designated as mPZM-3 and mNCSU-23aa, respectively). Culture of PA embryos in mPZM-3 significantly increased development to the blastocyst stage than culture in NCSU-23aa (36.2% vs. 24.8%, p<0.05). Modified PZM-3 showed a significantly higher blastocyst formation than NCSU-23aa in both groups of embryos that were activated at 44 h and 48 h of IVM (51.0% vs. 35.5% and 49.0% vs. 34.2% in oocytes activated at 44 h and 48 h of IVM, respectively). Irrespective of the follicle diameter where oocytes were collected, embryonic development to the blastocyst stage was increased (p<0.05) by the culture in mPZM-3 compared to culture in NCSU-23aa (25.9% vs. 34.2% and 32.9% vs. 44.8% in embryos derived from small and medium size follicles, respectively). Our results demonstrated that culture media had significant effect on preimplantation development PA embryos and that mPZM-3 was superior to mNCSU-23 in supporting development to the blastocyst stage in pigs. This beneficial effect of mPZM-3 on embryonic development was not impaired by other factors such as time of oocyte activation and origin of immature oocytes (small and medium size follicles).
        4,000원
        191.
        2012.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Epigenetic modification including genome-wide DNA demethylation is essential for normal embryonic development. Insufficient demethylation of somatic cell genome may cause various anomalies and prenatal loss in the development of nuclear transfer embryos. Hence, the source of nuclear donor often affects later development of nuclear transfer (NT) embryos. In this study, appropriateness of porcine embryonic germ (EG) cells as karyoplasts for NT with respect to epigenetic modification was investigated. These cells follow methylation status of primordial germ cells from which they originated, so that they may contain less methylated genome than somatic cells. This may be advantageous to the development of NT embryos commonly known to be highly methylated. The rates of blastocyst development were similar among embryos from EG cell nuclear transfer (EGCNT), somatic cell nuclear transfer (SCNT), and intracytoplasmic sperm injection (ICSI) (16/62, 25.8% vs. 56/274, 20.4% vs. 16/74, 21.6%). Genomic DNA samples from EG cells (n=3), fetal fibroblasts (n=4) and blastocysts from EGCNT (n=8), SCNT (n=14) and ICSI (n=6) were isolated and treated with sodium bisulfite. The satellite region (GenBank Z75640) that involves nine selected CpG sites was amplified by PCR, and the rates of DNA methylation in each site were measured by pyrosequencing technique. The average methylation degrees of CpG sites in EG cells, fetal fibroblasts and blastocysts from EGCNT, SCNT and ICSI were 17.9, 37.7, 4.1, 9.8 and 8.9%, respectively. The genome of porcine EG cells were less methylated than that of somatic cells (p<0.05), and DNA demethylation occurred in embryos from both EGCNT (p<0.05) and SCNT (p<0.01). Interestingly, the degree of DNA methylation in EGCNT embryos was approximately one half of SCNT (p<0.01) and ICSI (p<0.05) embryos, while SCNT and ICSI embryos contained demethylated genome with similar degrees. The present study demonstrates that porcine EG cell nuclear transfer resulted in hypomethylation of DNA in cloned embryos yet leading normal preimplantation development. Further studies are needed to investigate whether such modification affects long-term survival of cloned embryos.
        4,000원
        192.
        2012.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Porcine has been known to have a great impact on the studies of organ transplantation, biomaterial production and specific biomodel development such as transgenic animals. To achieve such therapeutic purposes, establishment of porcine embryonic stem cells (pESCs) will be needed. Especially, in vitro differentiation toward neural cells from pESCs can be a useful tool for the study of early neural development and neurodegenerative disorders. In addition, these cells can also be used in cell replacement therapies and drug development for neuroprotective and/or neurotoxic reagents. Although several studies reported the successful isolation of pES-like cells, it has been a big challenge to determine optimal conditions to generate pESCs without loss of pluripotency for a long time. The present study was performed for generation and characterization of putative pESCs, and differentiation into neurons and astrocytes. In this study, porcine blastocysts were produced by parthenogenetically activated oocytes. The putative pESCs were cultured in pESC growth media supplemented with a growth factor and cytokines (bFGF, LIF and SCF). Subculture of pESCs was conducted by mechanical dissociation using syringe needles after 4-5 days of incubation. As results, six putative pESC lines were maintained over thirty passages. The putative pESCs were compact, round, flat, and single layered, which were similar to human embryonic stem cell morphologically. Six pES-like cells were positive for alkaline phosphatase activity at every three passages. Furthermore, Oct-3/4, Sox-2, Nanog and SSEA-4 were shown to be expressed in those cells. Also, normal karyotypes of pESCs were observed by Giemsa-staining. Differentiation potential into the three germ layers of the putative pESCs was demonstrated by the formation of embryoid bodies (EB). Besides, the study of ESC is very important in aspect of its application to not only the cell-based replacement therapies but also cellular differentiation research. Our results also showed that RA and N2 supplements activated the neural differentiation in pESC5. Neurofilament-l60 were expressed in neural precursor cells. The expression of markers for specific neural lineages, such as Microtubule-associated protein-2 expressed in matured neuron, was also induced from embryonic neural progenitors. In summary, the pESCs were generated from the parthenogenetically activated blastocysts and the typical characteristics of the cells were maintained for the long term culture. Furthermore, it was successful to differentiate the pESCs into various neural lineages through in vitro neurogenesis system. Eventually, pESCs will be excellent biomedicine in incurable and/or zoonotic diseases by regenerating the damaged tissue.
        4,000원
        193.
        2012.06 구독 인증기관·개인회원 무료
        Genetic modification of the pig of which the gene is relevant to human diseases allows the pig to be used as a source of biomedical animal model. The promoter which could drive efficient expression constitutively or specifically of the interest gene in porcine organs is essentially required to increase versatility of a biomedical porcine model. In this study, we compared different promoters of activities driving efficient expression in different types of porcine cells including primary fibroblasts, kidney-derived PK-15, and primary endothelial cells (EC). To this end, we inserted CMV, EF1-α, CMV/EF1-α, CAG, human and porcine membrane cofactor protein gene promoters(MCP and Mcp), and porcine intercellular adhesion molecule-2 (Icam-2) promoter into pGL3 basic vector. Luciferase assay revealed that CAG promoter led to highest promoter activity in fibroblasts and PK-15 cells. CMV, EF1-α, CMV/EF1-α promoters showed moderate activities for luciferase expression in fibroblasts and PK-15 cells. Interestingly, CMV/EF1-α promoter, in which CMV promoter was linked to the front of EF1-α promoter as an enhancer led to highest luciferase expression in EC. The MCP, Mcp and Icam-2 promoters showed very low level of luciferase expression in three types of cells. Taken together, this study demonstrated that promoter activity in different porcine cells is differently expressed.
        194.
        2012.06 구독 인증기관·개인회원 무료
        Porcine blastocyst’s quality derived from in vitro is inferior to in vivo derived blastocysts. In this study, to improve in vitro derived blastocyst’s quality and then establish porcine ESCs (pESCs), we treated in vitro fertilized (IVF) embryos and parthenogenetic activated (PA) embryos with three chemicals: porcine granulocyte-macrophage colony stimulating factor (pGM-CSF), resveratrol (RES) and β-mercaptoethanol (β-ME). The control group was produced using M199 media in in vitro maturation (IVM) and porcine zygote medium-3 (PZM3) in in vitro culture (IVC). The treatment group is produced using M199 with 2 μM RES in IVM and PZM5 with 10 ng/mL pGM-CSF, 2 μM RES and 10 μM β-ME in IVC. Data were analyzed with SPSS 17.0 using Duncan’s multiple range test. In total, 1210 embryos in PA and 612 embryos in IVF evaluated. As results, we observed overall blastocyst quality was increased. The blastocyst formation rates were significantly higher (p<0.05) in the treatment groups (54.5%) compared to the control group (43.4%) in PA and hatched blastocysts rates in day 6 and 7 were also increased significantly. Total cell numbers of blastocyst were significantly higher (p<0.05) in the treatment group (55.1) compared to the control group (45.6). In IVF, hatched blastocysts rates in day 7 were increased significantly, too. After seeding porcine blastocyst, the attachment rates were higher in the treatment group (36.2% in IVF and 32.2% in PA) than the control group (26.6% in IVF and 19.5% in PA). Also, colonization rates and cell line derivation rates were higher in treatment group than control group. Colonization rates of control group were 10.8% in IVF and 2.4% in PA, but treatment group were 17.75% in IVF, and 13.1% in PA. And we investigated the correlation between state of blastocysts and attachment rate. The highest attachment rate is in hatched blastocyst (78.35±15.74 %). So, the novel system increased quality of porcine blastocysts produced from in vitro, subsequently increased attachment rates. The cell line derivation rates were 4.2% (IVF) and 2.4% (PA) in control group. In treatment group, they were 10.0% (IVF) and 7.2% (PA). We established 3 cell lines from PA blastocysts (1 cell line in control group and 2 cell lines in treatment group). All cell line has alkaline phosphatase activity and express pluri-potent markers. In conclusion, the novel system of IVM and IVC (the treatment of RES during IVM and RES, β-ME, and pGM-CSF during IVC) increased quality of porcine blastocysts produced from in vitro, subsequently increased derivation rates of porcine putative ESCs.
        195.
        2012.06 구독 인증기관·개인회원 무료
        Althogh Spermatogonial stem cells (SSCs) are widely studied in mice, study of pig SSCs is not sufficient for the isolation, long-term culture, and characterization. To identify the effect of growth factor in cultured pig SSC, newly generated pSSCs like cell from neonatal 5days porcine testis were cultured and investigated for the pSSCs like cell formation. Glial derived neurotrophic gactor (GDNF), fibroblast growth factor (FGF), leukemia inhibitory factor (LIF), and epidermal growth factor (EGF) were applied to culture media to identify the pSSC like cell growth and stem cell formation. The criteria for the determining of stem cell characters, morphology, number of colonies, putative stem cell marker were analysed by microspic, polymerase chain reaction (PCR) and immunocytochemistry (ICC) methods. Most of the pSSCs like cells were formed approximately 100 μm size with sphere shape. Most of the feeder cells were highly dependent on FGF that feeder cells were not stably attached on plate without FGF and colony formation of pSSC was not observed consequently. Immunocyto chemistry data revealed that this cells expressed the ubiquitin-C-terminal hydrolase 1 (UCHL-1, PGP9.5) and Dolichos Biflorus Agglutinin (DBA) in addition of 20 ng/ml EGF, 10 ng/ml FGF, 10 ng/ml GDNF, 10 U3/ml LIF. In addition, Alkaline Phosphatase ()was positive in all period of culture. This study suggest that various growth factorsinp SSC culture system is important to regulate and maintain the pSSC. In conculsion, although the precise role of growth factor in pSSC proliferation need to be clarified, combination of growth factor might be critical in order to derivation and proliferation of neonatal pSSCs and spermatogenesis.
        196.
        2012.06 구독 인증기관·개인회원 무료
        The objective of this study was to investigate the effects of NEAA and leptin supplemented to in vitro culture medium on the developmental competence of porcine embryos after intracytoplasmic sperm injection (ICSI), and to modify the culture condition to improve the quality and the development of ICSI-derived porcine embryos in vitro. After ICSI, the putative zygotes were then cultured in PZM-3 medium with/without NEAA or leptin. The proportion of embryos that developed to the blastocyst stage significantly increased when 1% NEAA (24.62%) was added to the medium compared with 2% NEAA and no NEAA group (17.24% and 20.24%, respectively, p<0.05). The effect of different concentration of leptin (0, 10, 100, 500 ng/ml) was evaluated on the development of porcine ICSI embryos cultured in vitro. In case of blastocyst formation, 100 ng/ml group (27.05%) showed significantly higher rate than 10, 500 ng/ml, and control group (23.45%, 17.99%, and 19.68%, respectively, p<0.05). We also evaluated the effects of different NEAA and leptin treatment time on the development of porcine embryos after ICSI. Among groups of embryos cultured in the presence of NEAA or leptin for whole 7 days (D 1-7), first 4 days (D 1-4), the subsequent 3 days (D 5-7), both NEAA (27.13%, 21.17 %, and 17.56%, respectively, p<0.05) and leptin (25.60%, 20.61%, and 16.53%, respectively, p<0.05) showed that supplementation for whole 7 days significantly increased the blastocyst formation rate compared with the other groups of D1-4 and D5-7. We further evaluated the combination effect of 1% NEAA and 100 ng/ml leptin compared with the effect of each supplementation with 1% NEAA or 100 ng/ml leptin or no supplementation on development of embryos. For blastocyst formation, combination group of NEAA and leptin (24.78%) showed significantly higher rate than other three groups (18.37%, 20.44 %, and 13.27%, respectively, p<0.05). We further evaluated the expression of proapoptosis genes such as BAX and BAK and anti-apoptosis genes, BCL-XL and BCL-2 in blastocysts cultured in the presence of 100 ng/ml leptin. RT-PCR analysis revealed that leptin supplementation significantly decreased the expression of pro-apoptosis genes as well as increased the expression of anti-apoptosis genes. These results of present study demonstrate that NEAA and leptin could improve the in vitro development of ICSI- derived porcine embryos with optimal concentration of each reagent. Furthermore, the optimal culture condition could increase the quality of ICSI-derived embryos in vitro.
        197.
        2012.06 구독 인증기관·개인회원 무료
        Semen can be divided into two parts. One is cellular part which contains sperms the other is liquid part which is called by seminal plasma. The seminal plasma is a nutritive and protective medium for the sperms. Fructose, which is major energy source, is supplied to sperms swim to female oocyte. Alkalic property protects sperms from hostile environment of female reproductive organ. Also, seminal plasma induces tolerance to preexisted immune cells, and changes intra‐uterine environment to better conditions for fertilized embryos to implant. However, the effects of seminal plasma in in vitro culture of fertilized embryos are unclear. Second fraction of fresh semen was obtained from a normal farm pig. The semen was centrifuged to remove sperms, and then supernatant was filtrated. The filtered seminal plasma was stored in — 30℃. In this study, electrically activated and chemically activated porcine embryos were employed to investigate the developmental rate after 2 hours treatment of none, 0.1%, 0.5%, and 1% seminal plasma in culture media by two days of activation. Both electrically and chemically activated embryos, cleavage rate and cell numbers of blastocysts were not significant difference within four groups. Blastocyst formation rate of electrically activated embryos also did not show significant difference within any groups. However 0.1% seminal plasma treatment group showed significantly increase of blastocyst formation rate in chemically activated group (None; 24.8%, 0.1%; 31.7%, 0.5%; 19.4, and 1%; 16.5%, respectively. p<0.05).
        198.
        2012.06 구독 인증기관·개인회원 무료
        It is well established that mammalian cumulus cell (CC) expansion requires BMP15 (bone morphogenetic protein bone morphogenetic protein 15) and GDF9 (growth differentiation factor 9). However, the mechanisms of the factors in CC expansion are largely unclear. This study was conducted to examine the two paracrine factors and their receptor SMAD intracellular signaling mechanism of mediating porcine CC expansion and oocyte maturation, and to compare COCs (Cumulus–oocyte complexes) maturation to DOs (Denuded oocytes). COCs and DOs were in vitro matured in medium with FSH, LH and TGFB superfamily antagonists. Our results showed that the expansion of COCs was unaffected by addition of GDF9 and BMP15 recombinant protein, but cumulus cell proliferation and DOs maturation rate were enhanced. The mRNA expressions of SMAD receptor confirmed that oocytes secreted factors that activate SMAD3,4 and SMAD1 in granulosa cells and oocytes, but unaffected SMAD2. Treatment of COCs with a SMAD2/3 phosphorylation inhibitor (SB431542) inhibited CC expansion and expression of TNFAIP6. SB431542 also was revealed to inhibit DOs maturation. The activation of CC SMAD signaling by oocytes, and the requirement of SMAD2/3 signaling for expansion and oocyte maturation were studied in pig. Nonetheless, porcine oocyte maturation without SMAD2/3 signaling is likely to be needed for optimal matrix formation, but also BMP15 and GDF9 is likely to be needed in oocyte.
        199.
        2012.06 구독 인증기관·개인회원 무료
        Pig embryonic stem cells (ESC) has been suggested to become important animal model for therapeutic cloning using embryonic stem cells derived by somatic cell nuclear transfer (SCNT). However, the quality of cloned embryo and derivation rate of cloned blastocyst has been presented limits for derivation of cloned embryonic stem cell. In this study, we have tried to overcome these problems by aggregating porcine embryos. Zonafree reconstructed SCNT Embryos were cultured in micro-wells singularly (non-aggregated group) or as aggregates of three (aggregated groups) at the four cell stage. Embryo quality of the cloned embryos and attachment on feeder layer rate significantly increased in the aggregates. The aggregation of pig SCNT embryos at the four-cell stage can be a useful technique for improving the quality of pig cloned blastocyst and improvement in the percentage of attachment on the feeder layer of cloned embryos. * This work was supported by the BioGreen 21 Program (PJ0081382011), Rural Development Administration, Republic of Korea.
        200.
        2012.06 구독 인증기관·개인회원 무료
        Autophagy is known to be involved in a variety of biological processes. However, relatively a little is known regarding oocyte maturation and preimplantation development in mammals. Thus, the current study was conducted to investigate the role of autophagy in oocyte maturation and subsequent preimplantation development in pigs. Porcine oocytes were matured in the presence or absence of 1 μM rapamycin, an autophagy inducing agent, fertilized in vitro, and cultured to blastocyst stage. From Western blotting analysis, we found that active form LC3 was detected during in vitro maturation (IVM) period, suggesting the possible role of autophagy in oocyte maturation. Interestingly, treatment of rapamycin during IVM significantly increased nuclear maturation compared to control group. Importantly, rapamycin-assisted IVM greatly improved monospermic fertilization and blastocyst development rates compared to control embryos. In addition, we also found that cell number and blastomere survival in blastocysts were markedly increased in rapamycin treatment group, which was further evidenced by both elevation of anti-apoptotic transcript Bcl-XL and decrease of pro-apoptotic transcript Bax. Collectively, these results strongly suggest that induction of autophagy may contribute to the completion of nuclear and cytoplasmic maturation of porcine oocytes.