검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 769

        241.
        2018.01 KCI 등재 서비스 종료(열람 제한)
        In this research, we present a new methodology to indirectly assess the concentration levels of the biochemical oxygen demand (BOD) and total nitrogen (T-N) of dewatered cake by evaluating the amounts of the volatile solids (VS) and total solids (TS). Information regarding the BOD and T-N concentrations of dewatered cake could then be used to estimate the Greenhouse Gas (GHG) emissions caused by sewage treatment. To this end, regression equations were derived by considering the relationship between the product of two solid terms: (TS × VS) and BOD/T-N levels of digested sludge. The optimal regression equations for BOD and T-N were computed as y = 152425x (R2= 0.969, p < 0.05) and y = 128378x (R2= 0.970, p < 0.05), respectively. For the purposes of verification, the applicability of the regression equations was tested using the data for other periods not considered in the regression analysis. Accordingly, the differences between the measured and estimated concentration data (derived using the regression equations) were within the standard deviation of the measured concentrations. However, the concentrations estimated by regression equations were quite different from those obtained by conventional methods. Nonetheless, such differences did not significantly change GHG emissions, thus we conclude that the plant specific regression equations can be derived from the methods presented in this study, although more efforts are needed for its validation in various respects.
        242.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        Numerical analysis using commercial CFD code was carried out to develop the drag force type vertical axis hydraulic turbine for the improvement of the production efficiency of small hydro energy at low flow velocity condition. Blade pressure changes and internal flows were analyzed according to the presence or absence of the hydraulic turbine blade holes at flow velocity of less than 1.0~3.0 m/s. According to the numerical results, the pressure and flow velocity is severly affected by the flow velocity in turbine blade with no holes, while the influence of flow velocity is comparatively decreased in turbine blade with holes. It is also found that the pressure and flow velocity on the blade surface with holes are evenly distributed with no singular location and it is believed that forming a hole in the blade may be helpful in terms of structural safety.
        243.
        2017.11 서비스 종료(열람 제한)
        유기성 폐기물 중 하나인 하수슬러지는 하수처리시설 중 1차 침전지와 생물학적 처리 단계에서 대량 발생한다. 이러한 하수슬러지는 재활용, 소각, 매립, 그리고 해양투기 방식으로 처리되어 왔으며, 국내에서는 발생량의 절반이상이 해양투기에 의해 처리되어왔다. 하지만 2012년 런던협약에 의해 해양투기가 금지됨에 따라 하수슬러지 처리에 관한 문제가 급부상 하였고, 최근에는 고형연료로의 재활용에 대한 많은 연구가 이루어지고 있다. 하지만 고형연료의 요구함수율을 충족시키기 위하여 탈수슬러지의 추가적인 건조과정이 필요하다. 하지만 높은 수분을 함유하고 있어 건조과정이 길어지고 고형연료로써 가치가 떨어져 경제적으로 어려움이 있다. 따라서, 본 연구에서는 하수슬러지의 건조방법 중 하나인 Bio-drying공법을 사용하였으며, 무분별하게 폐기되는 한약재 부산물을 혼합하여 적용하였다. Bio-drying은 생분해성 폐기물이 퇴비의 초기 단계를 통해 빠르게 가열되어 폐기물 흐름에서 수분을 제거하여 전체 중량을 감소시키는 과정이다. Bio-drying 공정에서 강제통풍뿐만 아니라 생물학적 열에 의해 건조 속도가 증가한다. 유기물의 호기성 분해를 통해 자연적으로 이용 가능한 생물학적 열의 주요 부분은 혼합 된 슬러지와 관련된 표면 및 결합수를 증발 시키는데 이용된다. 이 열 발생은 보충화석 연료가 필요 없고 최소한의 전력 소비로 Biomass의 수분 함량을 감소시킨다. 이에 본 연구에서는 Bio-drying을 통하여 하수슬러지와 한약재 부산물을 비율에 따라 혼합하여 Bio-drying의 20일 동안의 건조효율을 살펴보았다. 또한, 혼합물의 특성분석을 통하여 고형연료로써의 이용가능성을 평가해보았다.
        244.
        2017.11 서비스 종료(열람 제한)
        하수슬러지와 음식물류폐기물을 포함한 유기성폐기물은 도시의 산업화, 인구 증가에 따라 그 규모와 발생량이 증가하고 있는 추세이다. 하수슬러지의 경우, 2003년 이후로 연평균 4.6 %씩 꾸준히 증가하여 2014년 기준 597 개소 하수처리장에서 약 10,112.7 ton/d 정도 발생되었다. 같은 해 음식물류폐기물은 총 생활폐기물 발생량의 27.4 %인 13,697.4 ton/d 규모로 배출되었다. 2012년 이후 음식물류폐기물을 필두로 해양투기가 전면 금지되면서 유기성폐기물의 육상처리와 신재생 에너지원으로서 효과적 활용에 대한 정책 추진과 연구가 진행되어왔다. 매립, 소각을 포함한 육상처리 방법 중, 바이오가스화는 혐기소화 과정에서 신재생 에너지원인 메탄가스를 생산하는 시설로 현 상황에 대응하는 새로운 방안으로 각광받고 있다. 전국 12개소 하수슬러지 단독 및 병합처리 바이오가스화 시설을 대상으로 현장조사 및 정밀모니터링을 실시하였다. 사계절 평균으로 정밀모니터링 결과를 정리하였을 때, 시설의 효율성 분석에서 유기물분해율은 VS 기준 55.2 %, CODcr 기준 48.7 %로 나타났다. 병합처리 시설의 유입 VS 농도는 단독처리시 2.59 % 보다 1.6배 높은 4.05 %로 조사되었다. 대상 시료의 원소분석시 평균 C/N비는 유입 7.7, 유출 6.5로 낮은 수치를 보였다. 시설의 안정성 분석에서 혐기소화조 유출액의 VFAs은 수분석시 427 mg/L, 기기분석시 42 mg/L로 분석되었으며, 소화슬러지 탈리여액의 질소와 인은 TN 1,229 mg/L, TP 155 mg/L 등으로 안정적인 운전범위에 속하였다.
        245.
        2017.11 서비스 종료(열람 제한)
        국내 하수처리장의 바이오가스화 시설은 낮은 농축율로 인한 저농도 유입수, 공정 흐름별 운영기술에 대한 노하우 부족 및 관리 미숙으로 인하여 혐기소화 효율이 미국 등 선진국 대비 약 54.2 %에 불과한 실정이다. 환경부는 바이오가스화 효율을 증진하고 하수슬러지를 바이오매스로 활용하기 위하여 2010년부터 전국적으로 에너지자립화 사업을 추진하였다. 특히 혐기소화조가 미설치된 하수처리장을 대상으로 음식물류폐기물과 병합소화시 연계 하수처리장의 유입 수질 등을 사전에 검토한 후 신규 소화조를 건설을 진행하고 있다. 하수슬러지 단독 및 병합처리 시설의 혐기소화조 내부 유출액에 대한 최우점 미생물 종을 분석하고 바이오가스화 시설의 주요 운전인자(유기물부하율, 메탄가스 발생량, C/N 비 등) 간의 정준상관분석을 실시하였다. 하수슬러지 단독 및 병합처리 시설의 상관관계 분포가 뚜렷이 구분되었으며, 메탄가스 생성율은 음폐수의 영향으로 VFAs, C/N비, VS/TS 등과 비례관계를 보임과 동시에 Mesotoga, Methanosaeta 미생물 군이 우점하는 경향을 보였다. 또한 하수슬러지 단독처리 바이오가스화 시설의 혐기소화조에서는 Copro-thermobacter, Methanosarcina 등의 미생물 분포가 높게 나타났다.
        246.
        2017.11 서비스 종료(열람 제한)
        플라스틱의 특성을 가지고 있는 5mm 미만의 미세플라스틱은 비스페놀A(Bisphenol A), 프탈레이트(Phthalate) 등을 함유할 수 있을 뿐만 아니라 잔류성 유기오염물질(POPs, persistent organic pollutants)과 금속을 흡착할 수 있다. 본 연구에서는 생활하수처리장으로 유입된 미세플라스틱의 각기 다른 공법이 채용된 시설에서의 제거율을 비교, 검토하였다. 시료는 A2O(DNR), SBR(MSBR), 담체(DeNiPho)공법으로 운영되는 합류식 생활하수처리장 세 곳을 대상으로 유입수, 방류수, 슬러지 케잌을 채취했다. Table 1에 분석결과를 제시하였다. 방류수와 슬러지 케잌에 존재하는 미세플라스틱의 합이 유입수에 존재하는 미세플라스틱의 양과 큰 차이를 보이는 것은 관로, 여과장치, 담체 등에 미세플라스틱이 잔존하고 있음을 보여주고 있다. 제거율은 SBR(MSBR)이 가장 높았으며, 담체(DeNiPho), A2O(DNR)가 뒤를 이었다.
        247.
        2017.11 서비스 종료(열람 제한)
        산업의 발달과 생활수준이 높아짐에 따라 에너지의 사용량이 증가되고 있는데 이중 대부분은 화석연료에 의해 충족되고 있다. 하지만 화석연료의 한계성과 온실가스 발생 등의 환경문제로 인해 새로운 대체 에너지 연구개발에 대한 관심이 크다. 바이오매스는 탄소중립이 가능한 친환경적 재생에너지 이다. 특히, 하수처리장에서 발생량이 지속적으로 증가되고 처리의 어려움을 가지고 있는 하수 슬러지 폐기물은 청정에너지와 자원으로 전환이 가능한 바이오매스이다. 이러한 바이오매스 폐기물의 전환기술 중 현재 관심을 가지고 연구가 진행되고 있는 것은 하수 슬러지를 열분해 또는 가스화 해서 바이오 가스, 바이오 오일, 슬러지 촤(sludge char)의 에너지를 생산하는 방법이다. 최근에는 마이크로 웨이브 가열방식에 의한 바이오매스 열적처리 방식에 대한 연구가 진행되고 있다. 마이크로웨이브 방식은 기존의 외부 열풍가열 방식과 달리 마이크로파가 직접 바이오 셀 내부로 침투해 물질분자와 원자 등을 진동시켜 직접 열을 발생시키는 유전체 가열이 진행된다. 이로 인해 기존의 가열방식에 비해 가열효율(heating efficiency)과 가열 율(heating rate)이 높고 이로 인해 가열시간이 단축되는 장점을 가지고 있다. 본 연구에서는 슬러지 폐기물을 바이오매스-CCS 기술(biomass-CCS technology)적용을 위한 새로운 형태의 마이크로웨이브 열적처리 기술을 개발하고자 한다. 이를 위해 마이크로웨이브 유전체가열 특성을 활용하여 탈수 슬러지를 건조-가스화 연속 일체형으로 진행하는 에너지 전환 특성을 파악하였다. 가스화 실험의 경우는 연소 전 포집 기술의 이산화탄소 분리공정에서 포집된 것을 활용하는 측면에서 이산화탄소 가스화에 대한 연구를 수행하였다. 이산화탄소 가스화 시 생성물은 가스, 촤, 타르인데 그 중 가스가 가장 많이 생성되고 잔류 탄화물인 슬러지 촤(sludge char) 그리고 중질 탄화수소인 타르의 순으로 생성되었다. 가연성 생성가스(producer gas)는 주로 수소와 일산화탄소가 생성되었고 일부 메탄과 탄화수소(THCs: C2H4,C2H6,C3H8)포함되었다.
        248.
        2017.09 KCI 등재 서비스 종료(열람 제한)
        This paper is containing two study. The one is a land treatment of sewage sludge reduction through the indirect heating method and the other verifies conversion possibility of sludge organic matter to auxiliary fuel, steel thermal insulation material, byproduct fertilizer compost and find the suitable recycling method for J city. It was confirmed that about 88 percent of weight reduction for transportation efficiency and method verification. The analysis result of the carbonized product component showed the average low heating value of about 2,850 kcal and the moisture content of 1.4% which means the sludge is suitable as a fuel.
        249.
        2017.05 서비스 종료(열람 제한)
        2014년 슬러지 발생량은 10,187ton/day로 2008년 기준 약 7,446ton/day에 비해 발생량이 약 37% 증가하였다. 하수슬러지의 발생량은 매년 증가할 것으로 예상되기 때문에 하수슬러지 발생량을 최소화 시키고 자원화하기 위한 여러 가지 대안 중 혐기성 소화방법과 슬러지 감량화 기술이 대안으로 제시되고 있다. 소화조는 장시간의 체류시간, 설계 값보다 낮은 소화효율 등의 고질적인 문제가 있으므로 슬러지를 효과적으로 처리 하기위해 이용 효율을 극대화하는 방안이 필요하다. 따라서 소화조 투입 전 단계에서 하수슬러지를 가용화하는 전처리를 실시하여 가수분해를 촉진시키고, 소화 효율을 높이는 방법을 이용하고 있다. 전처리 공정은 열적처리, 물리·화학적 처리, 생물학적 처리 등으로 구분되며, 이중 열적전처리 공정은 고온조건이나 저온조건에서 고분자 형태로 존재하는 슬러지를 저분자 형태로 전환시켜 바이오가스의 생산량과 소화효율을 증대시키는데 효과적인 것으로 알려져 있다. 열적전처리 중에서도 저온 열적전처리는 고온 열적전처리에 비해 공정 운전에 들어가는 에너지 소모량이 적고, 바이오가스 생산면에서도 효과적으로 알려져있다. 따라서 본 연구에서는 생슬러지 및 잉여슬러지를 대상으로 60~120 ℃, 30~120분 조건에서 실시한 저온 열적전처리 공정에 의한 물리·화학적 특성 변화를 분석하고, BMP test를 통하여 바이오 가스 생산율을 평가하였다. 용존성 물질로 존재하는 SCODCr, NH4+, PO43-, VFAs 분석결과, 생슬러지 및 잉여슬러지 모두 열적전처리 온도가 상승함에 따라 증가하는 것으로 나타났다. 가용화율은 120 ℃ 120분조건에서 SCODCr의 경우 가용화 전 각각 453mg/L, 1,698mg/L에서 열적전처리 후 최대 5,337mg/L, 8,769mg/L로 증가하였으며, TCODCr 중 SCODCr가 각각 약 12%, 18.6%차지하는 것으로 나타났다. 따라서 저온열적가용화 또한 슬러지의 세포 floc 파괴에 의한 내부 물질의 용출에 기인하여 가수분해 단계를 촉진시켜 소화효율을 향상시킬 수 있다고 판단된다.
        250.
        2017.05 서비스 종료(열람 제한)
        수도권매립지 하수슬러지 반입비용 상승과 2018년도부터 시행되는 폐기물처분부담금제 도입으로 경제적인 하수슬러지 재활용 방안 모색이 필요하다. 하수슬러지를 생물학적 건조하여 연료로 사용하거나 퇴비화하여 퇴비로 사용하는 방식은 처리 비용이 저렴하다. 본 연구에서는 하수슬러지 생물학적 건조 파일럿 및 실증 실험결과를 분석하였다. 하수슬러지 169 kg(50% 중량비)에 음식물 잔재물 84 kg, 미생물활성유도제 55 kg, 코코피트 27kg를 혼합하여 초기 함수율을 55%로 낮추고 반응 1일 후부터 최소 유량으로 공기를 송풍하였다. 반응 1일 후부터 일 3회 교반을 실시하였다. 혼합물 온도가 반응 1일만에 76℃까지 높게 올라가 반응 4일째까지 50℃ 이상 유지되었다. 혼합물 함수율은 초기 56%에서 반응 4일 후 45% 정도로 10% 정도 감소되었다. 하수슬러지 건조물 반송 실험에서는 건조슬러지(173 kg, 51%)를 하수슬러지(150 kg, 44%), 미생물활성유도제(15 kg, 4%)와 혼합하여 건조하였다. 반응 1일 후부터 지속적으로 공기를 송풍하고 교반하였다. 하수슬러지 혼합물 온도가 반응 1일만에 71℃까지 높게 올라갔으나 반응 2일째 대기온도로 낮아졌다. 이는 공기 송풍량을 높인 결과이다. 혼합물의 함수율은 초기 60%에서 반응 2일 후 약 51% 정도로 10% 정도 감소되었다. 미생물의 분해열을 유지하기 위해서는 적정 송풍량에서 공기 공급이 중요하다. 하수슬러지 10톤(53%)에 미생물활성유도제 2톤, 수피 3톤, 1차 발효퇴비 3.7톤을 포크레인으로 1차 혼합하고 혼합기에서 2차 혼합 후 반응로에 투입하였다. 송풍기 연속가동으로 공기 송풍하고 일 1-2회 포크레인으로 뒤집기를 실시하였다. 혼합슬러지 더미 상부 평균 온도는 반응 2일에 70℃까지 높아졌다. 혼합슬러지 함수율은 2일 후 54%로 높아진 후 7일째 44%까지 낮아졌다. 반송 실험으로 하수슬러지 10.2톤에 반송슬러지 5.5톤, 미생물활성유도제, 수피, 1차발효퇴비를 5.4톤을 포크레인으로 1차 혼합하고 혼합기에서 2차 혼합 후 반응로에 투입하였다. 송풍기를 연속으로 가동하고 일 1-2회 포크레인으로 뒤집기를 실시하였다. 혼합슬러지 더미 상부 온도는 반응 5일째 66℃까지 높아졌고 함수율은 반응 10일째 45%까지 낮아졌다. 혼합슬러지 함수율 저감 효율을 높이기 위해 혼합슬러지 더미 위에서 로터리 교반기로 혼합해주고 발생된 수증기를 외부로 배출하여 수증기 증발효과를 높일 필요가 있다.
        251.
        2017.05 서비스 종료(열람 제한)
        하수슬러지의 발생량은 꾸준히 증가하고 있으며, 하수슬러지의 해양투기 금지로 인해 대체 처리 방안들이 요구되고 있다. 다양한 하수 슬러지 처리 방안들 중, 하수 슬러지를 이용한 활성탄의 제조는 슬러지를 폐기가 아닌 재이용하는 방안으로 제기되고 있다. 활성탄은 탄소 성분을 이용하여 제조되므로, 하수 슬러지를 이용하여 활성탄을 제조하는 것도 가능하다. 기존의 대기오염제어설비에서 쉽게 제거되지 않는 원소 수은은 활성탄 흡착을 통해 제거될 수 있다. 본 연구에서는 국내 하수처리장에서 발생한 건조슬러지를 이용하여 다양한 물리적 특성을 지닌 활성탄을 제조하였고, 수은 흡착 능력을 평가하였다. 그리고 다른 원료에서 제조된 활성탄과 수은 흡착 결과를 서로 비교하였다.
        252.
        2017.05 서비스 종료(열람 제한)
        우리나라 유기성 폐기물처리의 가장 큰 비중을 차지하던 해양투기 방법이 폐기물 해양배출을 금지하는 런던협약으로 인해 2012년부터 해양투기가 전면 금지됨에 따라 안정적이고 지속적인 육상처리 시설이 요구되고 있다. 환경부는 폐기물 관리법으로 온실가스 발생 억제 및 재활용 촉진을 위하여 유기성 슬러지의 직매립을 금지하였다. 그동안 유기성 폐기물을 자원화하기 위한 방법으로 퇴비화 기술이 많이 연구되어 왔으나 여러 가지 문제점들이 야기되고 있다. 소각방법은 다이옥신과 같은 2차 오염의 우려가 있으며, 퇴비화 과정에서는 발생되는 악취로 인하여 민원이 잦아지고 결국 퇴비화 시설이 폐쇄되는 경우가 많았다. 우리나라에서 쓰이고 있는 퇴비화는 비 연속식 처리로 퇴비 원료(유기성 폐기물)의 제한적 처리와 퇴비화 활성에 요구되는 시간이 길어 부지요구도가 높은 문제, 불안정한 최종 생성물, 감량화 실패, 장시간 온도조절 및 공기주입으로 인한 에너지 소비증가로 상용화에 어려움이 많다. 본 연구에서는 강릉시 하수종말처리장에서 배출되는 하수슬러지를 대상으로, 초고온 호기성 발효과정을 통해 하수슬러지의 퇴비화 진행에 따른 온도변화, 발효가스 분석, pH, C/N비, 수분함량, 고형물 유기물 변화, 부피 및 무게변화, 중금속 분석, 혼합 및 교반과 같은 반응인자들을 도출하여 운전 변수를 알아보았다. 한편 하수슬러지의 퇴비화 진행에 따른 시료와 발효 종료된 퇴비의 중금속 및 유해인자 분석을 통하여 퇴비의 발효 메커니즘 및 안정성을 검증하였다. 초고온 퇴비화 기술의 새로운 정립과 국내 연구가 전무한 초고온 발효공정의 data base 확보를 목적으로 하였다. 또한 퇴비화 과정에서 발생되는 악취도와 악취를 발생시키는 원인물질을 밝히고자 하였다.
        253.
        2017.05 서비스 종료(열람 제한)
        수열탄화 (HTC, Hydrothermal Carbonization)는 수분함량이 높은 바이오매스를 바로 적용하여 닫힌계에서(closed system)에서 승온 시키면 150℃∼250℃범위에서 열수(hot water)에 의하여 고형물의 유기물 일부가 분해되기 시작하여, 탈카르복실화(decarboxylation)와 탈수(dehydration)반응이 유도되며 O/C, H/C 비율을 낮추고 탄소고정을 통해 바이오매스 고형연료의 에너지밀도를 높여 연료로서의 특성이 향상된다. 또한 수열탄화 반응시 높은 수분함량을 건조하여 수분을 증발시키지 않고 물로 분리함으로서 수분 제거시 소비되는 에너지를 일반 건조기술 대비 50%이상 절감함으로서 하수슬러지 고형연료화의 경제성을 향상 시킬 수 있다. 이렇게 분리된 액체생성물에는 유기물 분해에 의해서 용해성 유기물이 다량 농축되어 혐기소화의 전처리 기술로도 적용되고 있다. 본 연구에서는 I시 하수슬러지를 1년간 매달 sampling하여 계절별 하수슬러지 물리화학적 특성 변화와 수열탄화 적용 시 반응 및 연료 특성 변화를 확인하였다. 따라서 상용화 수열탄화 기술을 적용시 계절에 상관없이 안정적인 고형연료 확보 가능성을 확인하였다.
        254.
        2017.05 서비스 종료(열람 제한)
        우리나라는 런던협약 이행을 위하여 2012년부터 하수슬러지의 해양투기를 금지하고, 매립용 복토재, 발전소 보조연료, 바이오가스 생산 원료 등 하수슬러지를 다양한 재활용 물질로써 활용하기 위한 방법을 모색하여왔다. 이중 수열탄화(Hydrothermal carbonization)방법은 닫힌계에서 180℃~250℃온도조건과 이때 생성되는 반응기내 압력으로 운영되는 기술로, 기존 건조기술대비 에너지소비가 적은 연료화 기술이나 수열탄화 공정이후 다량으로 발생하는 탈리액의 처리가 필요하다. 이처럼 수열탄화 공정이후 고액분리된 액체생성물을 효과적으로 처리·활용하고자 본 연구는 하수슬러지 수열탄화 액체생성물의 단독 혐기소화 및 음폐수와의 혼합소화실험을 통하여 바이오가스 생산추이를 비롯한 혐기소화 특성변화를 관찰하였다. 실험은 유효용적 5L 규모의 혐기성소화조를 이용하였고, 35℃ 항온조건을 유지하기 위하여 water jacket형태로 반응기를 구성하였으며, 반응기 내부 균질화를 위하여 80rpm속도로 기계적 교반을 진행하였다. 유기물부하율(OLR)은 1g VS/L-day로 운영후 1.5g VS/L-day까지 증대시켰다. 실험 결과, OLR 1g VS/L-day 조건에서 하수슬러지 수열탄화 액체생성물의 경우 0.17L/g COD의 메탄전환율을 보였고, 음폐수혼합액의 경우 메탄전환율은 0.30L/g COD로 수열탄화 액체생성물 단독소화일 때 보다 높은 값을 보였다. OLR 1.5g VS/L-day 조건에서는 수열탄화액 액체생성물 단독처리시 OLR 1g VS/L-day 조건보다 메탄전환율이 크게 감소하는 경향을 보였고, 음폐수 혼합액은 OLR 1g VS/L-day 조건과 유사한 메탄전환율을 나타냈다.
        255.
        2017.05 서비스 종료(열람 제한)
        유기성폐기물(음식물, 하수슬러지 등)은 2005년부터 육상 직매립이 금지되었고, 2006년에 발효된 런던협약에 따라 2013년 1월부터 해양투기 또한 금지되어 폐기물의 처리 및 재활용이 시급한 실정이다. 따라서, 이러한 유기성 폐기물의 효과적인 자원화 방법 중 하나인 혐기성소화가 각광받고 있는 실정이며, 혐기성소화조에서 발생되는 바이가스는 일반적으로 CH4 50~90%, CO2 10~50%, 소량의 H2S 및 NH4로 알려져 있다. 이러한 바이오가스의 정제방법으로는 탄소흡착법, 막분리법 등이 있으나 높은 운전비용과 공정구성의 어려움, 2차 폐기물 발생 등 많은 문제를 일으키고, CO2의 재활용이 아닌 폐기시키고 있어 자원순환적인 측면에서 바람직하지 못하다. CH4의 전환방법중 하나인 CO2 methanation반응은 1M의 CO2와 4M의 H2가 반응하여 1M의 CH4와 2M의 H2O가 생성되는 반응이다. CO2는 열역학적으로 매우 안정된 물질로, 반응에 필요한 에너지를 공급하기 위해서는 수소 등과 같은 높은 에너지의 환원제를 같이 반응에 참여시켜 주어야 한다. 그러나 열역학적 평형으로 인해 전환이 제한되는 경우가 많아, 적절한 반응속도와 선택도를 달성하기 위해 촉매가 요구되며, CO2 methanation 반응에 사용되는 촉매는 주로 Ni, Fe, Al 등 금속계 촉매가 주를 이루고 있다. 따라서 본 연구에서는 바이오가스의 정제효율을 높이기 위하여 CO2 methanation 촉매를 다양한 조건에 따라 제조하였으며 각각의 촉매별 CO2 전환율을 평가하였다.
        256.
        2017.05 서비스 종료(열람 제한)
        하수슬러지는 2006년 런던협약이후 해양투기 금지 대상물질로 지정되어 효율적인 처리에 대한 연구가 진행되고 있다. 이에 대한 방안으로 각광 받고 있는 반탄화 공정은 시료의 분쇄성을 높여 혼소에 용이하며, 처리 후 시료가 소수성을 띄기 때문에 미생물에 대한 오염이 적다. 또한 에너지밀도를 높일 수 있어 원시료에 비해 높은 발열량을 가진다. 하지만 다량의 수분을 함유하고 있어 그 이용이 제한적이다. 본 연구에서는 고 함수율 시료인 하수슬러지의 단점을 보완하고자 저 함수율 시료인 폐목재를 1:1로 혼합하여 lab규모 실험을 통해 반탄화 특성을 파악하였다. 반응시간 20분 조건에서 반응온도를 200 ℃에서 50 ℃ 간격으로 550 ℃까지 승온시켰으며, 반응온도 250 ℃, 300 ℃조건에서 반응시간 10분에서 10분 간격으로 50분까지 증가시켰다. 생성된 반탄화물에 대하여 공업분석, 원소분석 및 발열량분석을 진행하였으며, 이를 통해 에너지수율, 연료비, 탄소비 등 반탄화물의 특성을 파악하였다. 반탄화물의 공업분석결과 반응온도 및 반응시간이 증가할수록 가연분은 감소하였으며, 회분과 고정탄소는 증가하는 경향을 보였다. 발열량의 경우 반응온도가 증가함에 따라 증가하는 경향을 보이다가 반응온도 400 ℃에서 최대 값(5082.7 kcal/kg)을 보인 후, 감소하는 경향을 보였다. 또한 원소분석결과를 기반으로 석탄 종의 O/C와 H/C의 비(Van Krevelen Diagram)을 비교하였다. 수소 및 산소는 반응온도가 증가함에 따라 감소하는 경향을 나타냈으며, 탄소함량은 전반적으로 증가하는 경향을 보였다.
        257.
        2017.05 서비스 종료(열람 제한)
        급속한 경제 성장과 함께 국내 하수처리 시설의 수는 증가하여 왔으며, 이로 인해 하수처리 시설로부터 발생되는 하수슬러지의 양도 꾸준히 증가하여 왔다. 2014년 기준 연간 발생량이 3,651,029 톤에 이르는 하수슬러지는 국제협약과 국내 법제도로 인해 해양투기와 직매립이 금지됨에 따라 이를 처리하기 위한 적절한 방법의 개발이 요구된다. 최근 하수슬러지 처리 방법을 살펴보면 전체 재활용되는 양의 43.8% (w/w)인 상당량의 하수슬러지가 건조 및 탄화의 방법을 통해 연료화 되고 있다. 하지만 슬러지의 경우 높은 함수율로 인해 건조 및 탄화 공정에 많은 양의 에너지가 소모되는 문제점이 있다. 이를 극복하기 위한 수단으로 슬러지에 함유되어 있는 수분을 열분해 반응에 이용할 수 있으며 비교적 낮은 온도에서 바이오매스의 탄화가 가능한 수열탄화가 많은 관심을 받고 있다. 본 연구에서는 슬러지의 수열탄화를 실시하고 생성된 바이오차를 이용하여 고형연료로서의 특성을 분석하는 한편 연료특성 개선을 위한 타 바이오매스와의 혼합처리 가능성을 확인하였다. 연구결과 180-270 ℃의 온도조건에서 생성된 바이오차는 모두 국내 바이오고형연료제품의 기준 발열량인 3,000 kcal/kg 보다 높은 4,000 kcal/kg 이상의 발열량을 보였다. 하지만 바이오고형연료제품 기준 중 회분함량에 대한 항목을 살펴보면 원시료 기준 29.11% (w/w)로 관련 기준인 15% (w/w)와 비교할 때 높았던 슬러지내 회분함량이 수열탄화 과정을 거치며 처리 온도에 따라 32.75-47.64% (w/w)로 오히려 증가하는 것을 확인할 수 있었다. 따라서 슬러지를 고형연료로 사용하기 위해서는 회분함량 개선을 위한 혼합물의 투입이 필요할 것으로 판단되었다. 이를 위하여 최근 대량 생산이 용이하여 차세대 에너지원으로 주목받고 있는 미세조류와의 혼합을 통한 연료특성 개선 가능성을 확인하였다. 미세조류의 경우 슬러지와 동일한 조건에서 수열탄화를 통하여 처리될 경우 회분함량이 1.29-2.96% (w/w)로 현저히 낮고, 발열량 또한 6,740 kcal/kg으로 높은 값을 보였다. 따라서 적절한 비율로 혼합된 슬러지와 미세조류의 수열탄화를 통한 처리 시 생성된 바이오차는 국내 바이오고형연료제품 기준을 만족할 수 있을 것으로 판단된다.
        258.
        2017.05 서비스 종료(열람 제한)
        인과 질소는 하천, 호소 등의 부영양화의 주요 인자로 작용하고 있고 특히 하수 중의 인 농도가 1 mg/L 이상일 경우 조류의 급증식이 일어날 수 있다. 현재 우리나라 하수처리 공정은 인을 기준치 이하로 제거하기 위해 총인 처리 공정을 운영하고 있으나, 이 과정에서 제거된 인은 슬러지와 혼합되어 폐기처분되고 있다. 인은 무한자원이 아닌 유한자원으로 비료, 금속표면처리 세정제를 비롯하여 다양한 용도로 사용될 수 있으며, 우리나라의 경우 전량 수입에 의존하고 있다. 최근 인광석 매장량의 한계로 인하여 인을 회수하여 재이용하는 기술이 반드시 필요한 실정이고, 그 대안으로 축산폐수, 혐기성발효액, 하수처리 시 발생되는 인을 유용한 자원으로 회수하는 방법에 관한 연구가 활발히 이루어지고 있다. 그러나 기존의 연구된 인결정은 100㎛ 이하의 미세 결정으로 고액분리 및 탈수에 어려움이 있다. 본 연구에서는 인제거 기술 중 화학적 침전법 중 하나인 MAP(Magnesium Ammonium Phosphate) 법을 적용하여 부천시와 공동으로 부천시 소재 공공하수처리장에서 발생되는 탈수여액내의 인을 회수하고자 하였으며 다양한 실험조건(pH, 약품, 주입량, Seed적용)에 따라 인회수 및 입상화의 최적 조건을 도출하고 연속반응조를 통하여 2mm 이상의 크기로 입상화가 가능함을 확인하였다. Jar-test 실험결과 pH 9, 몰비 1~9(Mg2+/PO4-P) 범위에서 PO4-P가 55%~90% 제거되었으며, 생성된 결정화물을 seed로 사용하여 최적 약품투입량 도출결과 pH9, 몰비1 조건에서 6회 재사용시 seed 미적용 대비 PO4-P 제거율이 36% 상승하였다. 도출된 조건을 이용하여 2단 상향류(내경이 1.1cm, 1.8cm) 반응조와 침전조로 구성된 Lab Scale 반응조에서 선속도를 변화시켜 입상화를 유도하였다. 입상화시 PO4-P 제거율은 70%~84%, NH3-N 제거율은 20%~28%로 나타났으며, 내경 1.1cm의 반응조 하부에는 2mm~1.5mm, 내경 1.8cm의 반응조 상부에서는 0.6mm~1.2mm로 입상화되었다. 본 연구에서 미립 결정화물을 연속 순환을 통하여 선속도에 따른 입상화를 확인한 결과, 2mm 이상의 인 결정화물의 생성이 가능함을 입증하였다. 이를 통해 탈수 및 건조에 소요되는 에너지를 최소화하고 고순도 입상화로 비료 가치를 향상시켜 경제성 확보가 가능할 것으로 사료된다.
        259.
        2017.05 서비스 종료(열람 제한)
        최근 도시 인구의 증가에 따라 하수 및 분뇨 발생량이 증가하고 있으며, 다양한 오염원으로부터 유입되는 하수에는 질병을 유발할 수 있는 다양한 병원성 미생물이 존재한다고 알려져 있다. 하수처리를 위한 다양한 공정에서는 미생물을 포함하고 있는 bioaerosol이 발생할 수 있으며, 하수 및 분뇨에 포함된 병원성 박테리라 등을 포함하고 있을 가능성이 높다. 따라서 호흡을 통해 하수처리장의 근무자 및 주변 주민에게 위해를 가할 수 있으므로, bioaerosol의 발생 특성 및 감소에 관한 연구가 필요한 현실이다. 하수처리공정 중 bioaerosol이 발생하는 대표적인 환경으로는 활성 슬러지 공정이 있으며, 폭기조에서의 대량 폭기로 인한 높은 농도의 bioaerosol이 발생한다고 알려져 있다. 최근에는 기존의 재래식 활성슬러지 공정(CAS, Conventional Activated Sludge)보다 소요 면적이 적고, 고농도의 미생물 농도를 유지하고 있어 수질 처리 효율이 좋은 호기성 MBR(Membrane bioreactor)의 사용이 증대되고 있다. 그러나 호기성 MBR은 고농도의 미생물 농도 유지 및 멤브레인의 파울링 감소를 위해서는 많은 양의 공기 폭기를 유지해야하므로, 상대적으로 높은 농도의 bioaerosol의 발생이 한정된 공간에서 이루어질 것으로 예상된다. 호기성 MBR의 특성상 운전 조건에 따라서 반응기 내 미생물의 농도 및 특성이 달라질 것이며, 이에 따라 bioaerosol의 발생량 및 특성도 영향을 받을 것으로 예상된다. 그러나 국내에서는 하수처리 과정 중 호기성 MBR 공정에서의 bioaerosol 발생에 관한 연구가 전무하며, 이에 대한 기초 연구 및 발생량 감소를 위한 연구가 미흡한 실정이다. 본 연구에서는 하수처리장 MBR 공정에서 운전 조건에 따른 반응기 내 미생물 농도 및 특성을 확인하고, bioaerosol 발생량을 비교하고자 하였다. 더불어 bioaerosol 발생량을 저감할 수 있는 방안에 대한 연구를 추가적으로 진행하고자 하였다.
        260.
        2017.05 서비스 종료(열람 제한)
        우리나라는 지형 특성상 효율적인 수자원 확보가 어려운 실정이기 때문에 안정적이고 지속적인 수자원 공급을 위해 수자원 개발의 필요성이 대두되고 있다. 우리나라의 기존 수자원확보는 대형 댐이나 저수지 형태가 대부분이지만 이는 축조로 인해 대규모 생태계 훼손의 우려가 있어 최근 정부는 해수의 담수화 시스템 개발, 일회성 용수 재사용, 하수 재이용 등 새로운 정책을 시도하고 있다. 우리나라의 하수 재이용율은 매년 꾸준히 증가하는 추세이며 막 분리법, 이온교환 처리법 등 다양한 재이용수 개발공법에 대한 연구가 진행되고 있다. 하지만 막 여과는 막의 수명이 비교적 짧고 막 교환비용이 높은 특성을 가지며, 이온교환 공정은 유지관리가 어렵고 용량에 비해 처리 비용이 고가인 단점이 있다. 따라서 본 연구에서는 이러한 처리법 외에 전기화학적 처리방법인 전기응집에 대한 연구를 시도하였다. 전기응집 공법은 유입 원수에 큰 영향을 받지 않아 폐수성상을 가리지 않고 오염물질을 효과적으로 처리할 수 있으며, 다른 공정과 비교했을 때 설치면적 당 처리 용량이 커서 경제적이다. 이에 본 연구에서는 전기응집 공법에서 영향인자로 알려진 전류밀도, 전극 간격, 교반속도와 시간에 따른 제거효율을 Jar-test를 통해 확인하고 최적조건을 도출하였다. 또한 도출해낸 최적조건에서 전기응집을 이용해 하수처리수의 재이용수로 이용 가능성에 대해 판단하고자 하였다. 전류밀도는 0.036A/cm², 전극간격은 0.3cm, 교반속도와 시간은 100rpm, 5분에서 가장 높은 제거효율을 보여 이를 최적조건으로 결정하였다.