검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,994

        281.
        2022.05 구독 인증기관·개인회원 무료
        Today, the domestic and international nuclear power industry is experiencing an acceleration in the scale of the nuclear facility decommissioning market. This phenomenon is also due to policy changes in some countries, but the main reason is the rapid increase in the proportion of old nuclear power plants in the world, mainly in countries that introduced nuclear power plants in the early stages. Decontamination is essential in the process of decommissioning nuclear facilities. Among various decontamination targets, radionuclides are adsorbed between pores in the soil, making physical decontamination quite difficult. Therefore, various chemical decontamination technologies are used for contaminated soil decontamination, and the current decontamination technologies have a problem of generating a large amount of secondary wastes. In this study, soil decontamination technology using supercritical carbon dioxide is proposed and aimed to make it into a process. This technology applies cleaning technology using supercritical fluids to decontamination of radioactive waste, it has important technical characteristics that do not fundamentally generate secondary wastes during radioactive waste treatment. Supercritical carbon dioxide is harmless and is a very useful fluid with advantages such as high dissolution, high diffusion coefficient, and low surface tension. However, since carbon dioxide, a non-polar material, shows limitations in removing polar and ionic metal wastes, a chelating ligand was introduced as an additive. In this study, a ligand material that can be dissolved in supercritical carbon dioxide and has high binding ability with polar metal ions was selected. In addition, in order to increase the decontamination efficiency, an experiment was conducted by adding an auxiliary ligand material and ultrasonic waves as additives. In this study, the possibility of liquefaction of chelating ligands and auxiliary ligands was tested for process continuity and efficiency, and the decontamination efficiency was compared by applying it to the actual soil classified according to the particle size. The decontamination efficiency was derived by measuring the concentration of target nuclides in the soil before and after decontamination through ICP-MS. As a result of the experiment, it was confirmed that the liquefaction of the additive had a positive effect on the decontamination efficiency, and a difference in the decontamination efficiency was confirmed according to the actual particle size of the soil. Through this study, it is expected that economic value can be created in addition to the social value of the technology by ensuring the continuity of the decontamination process using supercritical carbon dioxide.
        282.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the removal efficiency of PFCs(perfluorinated compounds) in the GAC(granule activated carbon) process based on the superheated steam automatic regeneration system was investigated in laboratory scale and pilot-scale reactor. Among PFCs, PFHxS(perfluorohexyl sulfonate) was most effectively removed. The removal efficiency of PFCs was found to be closely related to the EBCT, and the removal efficiencies of PFOA(perfluorooctanoic acid), PFOS(perfluorooctyl sulfonate), and PFHxS were 43.7, 75, and 100%, respectively, under the condition of EBCT of 6 min. Afterward, PFOA, PFOS, and PFHxS exhibited the earlier breakthrough time in the order. After that, GAC was regenerated, and the removal efficiency of the PFCs before and after regeneration was compared. As a result, it was shown that the PFCs removal efficiency in the regenerated GAC process were higher, and that of PFOA was improved to 75%. The findings of this study indicate the feasibility of the superheated steam automatic regeneration system for the stable removal of the PFCs, and it was verified that this technology can be applied stably enough even in field conditions.
        4,600원
        291.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon fiber and its composites are increasingly used in many fields including defence, military, and allied industries. Also, surface quality is given due importance, as mating parts are used in machineries for their functioning. In this work, the turning process is considered for Carbon Fiber Reinforced Polymer (CFRP) composites by varying three important cutting variables: cutting speed, feed, and depth of cut. Correspondingly, the surface roughness is measured after the completion of turning operation. As well, a prediction model is created using different fuzzy logic membership function and Levenberg–Marquardt algorithm (LMA) in artificial intelligence. Later, the surface roughness values from the developed models are compared against the experimental values for its correlation and effectiveness in using different membership functions of fuzzy logic and ANN. Thus, the experimental results are analyzed using the effect graphs and it is presented in detail.
        4,500원
        292.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Herein, a facile bottom–up approach for producing nitrogen-doped carbon quantum dots (N-CQDs) was carried out by the hydrothermal treatment of microcrystalline cellulose, in the presence of different nitrogen sources (blank/urea/ammonia water/ethanediamine(EDA)/Hexamethylenetetramine). The result showed that the fluorescence intensity and quantum yields (QYs) of N-CQDs with different nitrogen sources are all higher than that without nitrogen source. Compared with the other three nitrogen sources, N-CQDs prepared by EDA not only have the highest fluorescence intensity but also the largest QYs of 51.39%. Therefore, EDA was chosen as the nitrogen source to prepare N-CQDs. The obtained N-CQDs are uniform spherical particles with a diameter of 2.76 nm. The N-CQDs also exhibit excitation-dependent and long-wave emission properties. The emission range of N-CQDs is 470–540 nm. Moreover, N-CQDs as fluorescent agents successfully acted on purple LEDs (λem = 365 nm) to achieve white LEDs light emission. At the same time, a fluorescent thin layer chromatography plate was successfully prepared using N-CQDs, silica gel G and Sodium carboxymethylcellulose as raw materials. The separation trajectory of mixed sample of Sudan red III and kerosene on the fluorescent TLC plate is obviously clearer than that of the TLC plate.
        4,000원
        293.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        One-step hydrothermal reduction method was used to prepare three-dimensional carbon fiber brush-based graphene–platinum (CFB/Pt–G) composites to improve the electrocatalytic oxygen reduction activity of cathode materials for seawater oxygen-dissolved battery. Characterization results show that the reduced graphene oxide of as-prepared graphene–platinum composite displays the few-layer folded structure. In addition, Pt nanoparticles with the polycrystalline structure dispplay a preferential growth along the crystal plane of (111) and are mainly distributed around the defect cavities of folded graphene. Electrochemical results show that the diffusion-limited current density of CFB/Pt–G composite tested with 1600 rpm/min in 3.5% NaCl solution reaches 5 mA/cm2, while that of CFB/G is only 2.64 mA/cm2. Battery discharge results show that the maximum volume power density of CFB/Pt–G–Mg battery with a stable open voltage of 1.73 V is 81 times as much as the commercial seawater battery SWB1200.
        4,000원
        294.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        By polymerizing acrylonitrile in the presence of ammonium persulfate as an initiator and Pterocladia capillacea-activated carbon (P-AC) as a filler, a composite material polyacrylonitrile/Pterocladia capillacea-activated carbon (PAN/P- AC) was developed. By reacting hydroxylamine with the composite's nitrile groups, the prepared composite was functionalized by amidoximation. FTIR spectrometry, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Brunauer–Emmett–Teller (BET) analysis were all applied to thoroughly characterize the fabricated adsorbent. For the treatment of Cr(VI) ions from synthetic solutions, the adsorption properties of amidoximated polyacrylonitrile/Pterocladia capillacea-activated carbon (PAO/P-AC) were investigated. The pH effect, uptake kinetics, adsorption isotherms, and thermodynamics studies were used to characterize adsorption properties. As a kinetic model analysis, the data confirmed that the pseudo-second-order rate equation matched well the adsorption process. With coefficients of determination (R2) of 0.9998, the Tempkin isotherm model had the lowest error, suggesting that it is the best fitted model to describe this adsorption mechanism. Thermodynamic parameters demonstrated that Cr(VI) adsorption was endothermic.
        6,000원
        295.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Heavy metal pollution has a harmful impact on human health and is regarded as a vital problem. Preparation of a novel, low cost bio-sorbent for heavy metal sorption is the main target of this research. Non-living Chlorella Vulgaris Alga/Date pit activated carbon composite (1:1), (CV/AC), is a novel bio-sorbent prepared by the wet-chemical method for sorption of Pb (II) and Sr (II) from aqueous media. The optimum pH for sorption reaction is 5 and the equilibrium time is achieved within 1 h. The sorption efficiencies are 90.5% for Pb(II) and 95.7% for Sr(II) with initial concentration Co 10 mg L– 1 at 298 K. The monolayer sorption capacities of CV/AC composite at 298 K and pH = 5 were 6.34 ± 0.059, 5.97 ± 0.22 mg g– 1. The saturation capacities were 98.5 and 125 mg g– 1 for Pb (II) and Sr (II), respectively after 10 days. The sorption process is a spontaneous and endothermic reaction. It follows a pseudo-2nd-order mechanism. The results are suggestive of the need to adopt CV/AC composite as a potential bio-sorbent of Pb (II) and Sr (II) for waste water treatment.
        5,200원
        296.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The mechanosynthesis route is a physical top–down strategy to produce different nanomaterials. Here, we report the formation of graphene nanoribbons (GNRs) through this route using carbon bars recovered from discarded alkaline batteries as raw material. The mechanosynthesis time (milling time) is shown to have an influence on different features of the GNRs such as their width and edges features. TEM revealed the presence of GNRs with widths of 15.26, 8.8, and 23.55 nm for the milling times of 6, 12, and 18 h, respectively. Additionally, the carbon bars evolved from poorly shaped GNRs for the shortest milling time (6 h) to well-shaped GNRs of oriented sheets forming for the longest milling time. Besides GNRs, graphene sheets (GNS) of different sizes were also observed. The Raman analysis of the 2D bands identified the GNS signal and confirmed the GNRs nature. ID/IG values of 0.21, 0.32, and 0.40 revealed the degree of disorder for each sample. The in-plane sp2 crystallite sizes ( La) of graphite decreased to 91, 60, and 48 nm with increasing peeling time. The RBLM band at 288 cm− 1 confirmed the formation of the GNRs. Mechanosynthesis is a complex process and the formation of the GNRs is discussed in terms of a mechanical exfoliation, formation of graphene sheets and its fragmentation to reach GNR-like shapes. It is shown that the synthesis of GNRs through the mechanosynthesis route, besides the use of recycled materials, is an alternative for obtaining self-sustaining materials.
        5,400원
        297.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Abstract Recently, the circular economy aiming at elimination of waste and the continual use of resources has attracted a lot of attentions. In the circular system, the resource recovery uses the recycled wastes as the raw material to manufacture new valuable products. This work focuses on a low-cost process, in which an activated carbon (AC) adsorbent was prepared from waste cation exchange resin by calcination and HNO3 activation hydrothermal method. Surface structure and chemistry of AC were characterized by SEM, XRD, FTIR and Boehm titration. It was found that the acid treatment could increase the number of pores and the content of oxygen-containing functional groups on AC surface. In the adsorption experiment, Methylene blue (MB) was used to assess the adsorption capacity of AC. Experimental results showed that the highest efficiency of MB removal was achieved by AC with modification of 4M HNO3, showing the acidification effect on the adsorption capacity of AC. Adsorption isotherms of Langmuir and Freundlich were employed to fit the experimental data. It was shown that MB adsorption on AC is more consistent with Langmuir model that assumes a homogeneous adsorption. In the adsorption kinetic analysis, the adsorption was found to follow the pseudo-second-order model, indicating that adsorption of MB on acidified AC is dominated by chemical adsorption. The study revealed that the waste ion-exchange resin is a proper precursor of carbon adsorbent for MB dye. This low-cost method would specifically reduce the environmental cost of waste disposal.
        4,600원
        298.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We investigated the electronic and mechanical properties of single-walled carbon nanotubes (SWCNTs) with different tube diameters using density functional theory (DFT) and molecular dynamics (MD) simulation, respectively. The carbon nanotubes’ electronic properties were derived from the index number ( n 1 , n 2 ), lattice vectors, and the rolled graphene sheet orientation. For (6,1) SWCNT, ( n 1-n 2)/3 is non-integer, so the expected characteristic is semiconducting. We have considered (6,1) Chiral SWCNT with different diameters ‘d’ (4.68 Å, 4.90 Å, 5.14 Å, 5.32 Å, 5.53 Å) corresponds to respective bond lengths ‘  ’ (1.32 Å, 1.38 Å, 1.45 Å, 1.50 Å and 1.56 Å) and then analyze the electronic properties from the Linear Combination of Atomic Orbitals (LCAO) based on DFT. We have used both the DFT-1/2 and GGA exchange energy correlation approximations for our calculation and compared the results. In both cases, the energy bandgap is decreasing order with the increase in bond lengths. The lowest value of formation energy was obtained at the bond length  = 1.45 Å ( d = 5.14 Å). For the mechanical properties, we have calculated Young’s modulus using molecular dynamics (MD) simulations. From our calculation, we have found that the (6,1) SWCNT with bond length 1.45 Å ( d = 5.14 Å) has Young’s modulus value of 1.553 TPa.
        4,000원
        299.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Polyacrylonitrile (PAN)-based carbon fibers (CFs) and their composites, CF-reinforced plastics, have garnered significant interest as promising structural materials owing to their excellent properties and lightweight. Therefore, various processing technologies for fabricating these advanced materials using thermal energy have been intensively investigated and developed. In most cases, these thermal energy-based processes (heat treatment) are energy and time consuming due to the inefficient energy transfer from the source to materials. Meanwhile, advanced processing technologies that directly transfer energy to materials, such as radiation processing, have been developed and applied in several industrial sectors since the 1960s. Herein, general aspects of radiation processing and several key parameters for electron-beam (e-beam) processing are introduced, followed by a review of our previous studies pertaining to the preparation of low-cost CFs using specific and textile-grade PAN fibers and improvements in the mechanical and thermal properties of CF-reinforced thermoplastics afforded by e-beam irradiation. Radiation processing using e-beam irradiation is anticipated to be a promising method for fabricating advanced carbon materials and their composites.
        5,100원
        300.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The implanted electronic devices require a stable, continuous, and long-lasting energy source to function correctly. These devices are powered by alkaline batteries and lithium ions. When used in implantable or wearable devices, these batteries can pose a threat to human health and the environment. Because of these factors, implantable and wearable devices using enzyme biofuel cells (EBFCs) are receiving a lot of attention. These EBFCs use human physiological fluid to provide longterm control for these devices. Carbon nanomaterials have successfully been demonstrated in enzymatic biofuel cells to improve applications by increasing current and power density; they have the potential to enhance EBFC efficiency. This review summarizes the fundamental process of EBFC compounds based on carbon nanomaterials before delving into the most recent advancements that have been tested and used as implantable and wearable self-power sources.
        5,200원