검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4,107

        321.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fishery products play an important role in Korean food culture, and awareness of the safety of fishery products is increasing in the seafood market. Against this backdrop, Japan has announced a plan to release radioactive water to the sea from 2023. In the case of Korea, it is adjacent to the area to be discharged, so there are concerns about securing the safety of marine products. Therefore, it is necessary to analyze the change in perception and impact of marine product consumers due to the discharge of contaminated water and to study appropriate countermeasures when discharging contaminated water from nuclear power plants. In this study, the current status of radioactive contaminated water discharge in Japan was summarized, and a survey was conducted on the change in the consumption perception of marine products according to the discharge of contaminated water to analyze the factors affecting the consumption change of domestic consumers. According to the survey, 85.3% of the respondents said that it will affect the purchase of domestic marine products if Japan starts discharging contaminated water from nuclear power plants. Moreover, 85.5% of the respondents said it will affect the purchase of imported marine products.
        4,800원
        322.
        2022.06 구독 인증기관 무료, 개인회원 유료
        대왕자바리의 대량생산을 위한 적정 염분을 구명하였다. 각 염분별 노출시킨 대왕자바리의 생 존율은 0 psu에서 노출 4일째 모두 폐사하였으며, 염분 5 psu 이상에서 생존율은 100%였다. 성 장률은 염분 5 psu 이상에서 염분 상승에 따라 체중과 체장은 모두 증가하였으며, 염분 30 psu (대조구)에서 성장률은 가장 높았다. 먹이섭취량은 염분이 하강함에 따라 감소하는 경향을 보 였다. 염분 3 psu에서 먹이섭취는 없었으며, 염분 20, 25 및 30 psu 간에 유의한 차이는 없었다. 염분별 혈액 삼투질농도는 염분 5~30 psu에서 341~368 mg Osmol/㎏였다. 염분변화에 따른 산소소비율은 30 psu(대조구)에서 163.6±22.3 mg O2/㎏ fish/h으로 유의하게 높았다. 염분변화 에 따른 SOD, CAT 및 GSH-PX는 염분 15 psu에서 가장 높았다. 따라서 대왕자바리 생존 최저 임계염분은 5 psu이며, 양성을 위한 적정 염분은 20~30 psu으로 추정된다.
        4,000원
        323.
        2022.06 구독 인증기관 무료, 개인회원 유료
        광전기화학 성능을 향상시키기 위해 각 ZnO, ZnSe과 g-C3N4 소재의 장점을 살리도록 3성분계 적층 구조를 디자 인했다. 용액공정으로 FTO 기판위에서 ZnO 나노로드 어레이가 성장하도록 한 후 ZnO표면에 Se을 부착시켜 ZnO표면에 서 ZnSe층이 형성 되도록 이온 치환법을 도입하였다. ZnO/ZnSe 나노로드 위에 g-C3N4 층을 스핀코팅 한 후 각 층이 화 학적 접합이 되도록 질소 분위기 하에서 열처리를 하였다. AM 1.5G, 0.5 V 외부전압하에서 각 적층구조별로 광전기화학 적 전류밀도를 측정하였고 비교 결과 ZnO/ZnSe/g-C3N4 나노로드가 ZnO 및 ZnO/ZnSe 나노로드에 비하여 보다 높은 광 전류 밀도가 측정되었다. 수직 정렬된 ZnO 육각 프리즘형태는 큰 비표면적과 축 방향을 따라 전자 흐름을 원활히 하고, ZnSe 층은 비표면적과 광흡수 범위를 더욱 넗히는 효과를 가져왔다. 이로 인하여 ZnO/ZnSe/g-C3N4 삼원 접합 전극의 향상된 성능은 가시광선 흡수범위 확장, 전하 분리 강화 및 전자 전도도 향상으로 인한 시너지 효과에 기인되는 것으로 판단된다.
        4,000원
        324.
        2022.06 구독 인증기관 무료, 개인회원 유료
        저서동물은 저서환경특성을 나타내는 중요한 지시자로 알려져 있다. 본 연구에서는 무안만 조 하대의 환경 및 저서동물의 분포특성을 조사하였으며, 수질평가지수(WQI)와 저서생물지수 (AMBI)를 이용하여 저서생태계 건강성을 평가하였다. 현장채집은 2019년 하계 무안만 조하대 의 10개 정점에서 이루어졌다. 무안만 조하대는 상부지역이 하부지역에 비해 세립한 입도특성 을 나타내고 있었으며, 높은 유기물 함량을 보였다. 일부 정점에서 오염지표종인 Musculista senhousia, Theora fragilis and Lumbrineris longifolia과 같은 종들도 우점을 나타내고 있었다. 군집분석결과 무안만 조하대는 상부, 중부, 하부 그룹으로 구분되었으며, 유기물 함량과 저서 건강성 평가지수(WQI 및 AMBI)와의 상관결과와 일치하였다. 본 연구결과, 무안만 조하대의 저서생태계는 양호한 것으로 평가되었다. 하지만 저서동물이 균등하게 분포하지 않고, 기회 종이 출현하고 있어 조하대의 유기물 부하량이 증가하고 있는 것으로 보인다.
        4,000원
        333.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        물은 인간 생활의 필수요소임에 따라, 물에 대한 인식은 우리나라의 전통 적 공간관인 ‘풍수(風水)’에도 그대로 녹아들어 있다. 이에 연구는 풍수에서 중요하게 다루어지는 ‘물’의 논리를 지리학의 관점에서 고찰하였다. 특히 연 구는 ‘물은 재물이다(水管財物).’와 ‘기는 물을 만나면 멈춘다(氣界水則止).’의 논리를 중심으로 지리적 해석을 시도하였다. 구체적으로 연구는 ‘수관재물’ 논리에 대해 농업 및 상업의 두 측면에서 분석했고, ‘기계수즉지’논리에 대 해 지리학의 ‘곡류 목 절단 지형’과 비교 분석을 했다. 연구결과, 농업의 측면에서 전통 농경사회에서 빗물의 안정적인 확보와 이용은 농사와 직결되었고, 이는 물이 곧 재물이라는 인식으로 발달되었 다. 상업의 측면에서 물이 모이는 곳은 곧 재물이 모이는 곳이 되었다. 곡 류 목 절단 지형의 경우, 연구는 땅의 기운(地氣)을 멈추게 하는 물줄기(水) 로서 구(舊)하도와 현(現)하도 중 현하도를 기준으로 삼는 것이 타당함을 밝혔다.
        5,800원
        335.
        2022.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Designing and producing a low-cost, high-current-density electrode with good electrocatalytic activity for the oxygen evolution reaction (OER) is still a major challenge for the industrial hydrogen energy economy. In this study, nanostructured Fe-doped CuCo(OH)2 was discovered to be a precedent electrocatalyst for OER with low overpotential, low Tafel slope, good durability, and high electrochemically active surface sites at reduced mass loadings. Fe-doped CuCo(OH)2 nanosheets are made using a hydrothermal synthesis process. These nanosheets are clumped together to form a highly open hierarchical structure. When used as an electrocatalyst, the Fe-doped CuCo(OH)2 nanosheets required an overpotential of 260 mV to reach a current density of 50 mA cm−2. Also, it showed a small Tafel slope of 72.9 mV dec−1, and superior stability while catalyzing the generation of O2 continuously for 20 hours. The Fe-doped CuCo(OH)2 was found to have a large number of active sites which provide hierarchical and stable transfer routes for both electrolyte ions and electrons, resulting in exceptional OER performance.
        4,000원
        336.
        2022.05 구독 인증기관·개인회원 무료
        210Po is a naturally occurring radionuclide of 238U decay series with a half-life of 138.4 days. 210Po is decay products of 222Rn, which escapes into the atmosphere and present in all environments with aerosol particles. Also, 210Po has high radiotoxicity and emits a high alpha energy of 5.305 MeV, and it decays to finally become a stable isotope, 206Pb. Therefore, 210Po entering the body by continuously ingestion or inhalation is likely to cause severe damage to the bone marrow, kidney and spleen and other sites in the body. Accordingly, the World Health Organization (WHO) recommends that screening level of gross alpha for drinking water not exceed 0.5 Bq·L−1. Alpha spectrometry has been mainly used for analysis of 210Po, and for the accurate measurement of alpha particle with short range, it is essential to prepare suitable source for alpha detection. The 210Po alpha source is made by a spontaneous deposition method in which polonium is adsorbed thin and flat onto a metal disc, such as silver, nickel and copper. There are various pretreatment methods to separate and concentrate polonium from water samples prior to spontaneous deposition, including Fe(OH)3 or MnO2 co-precipitation and evaporation. However, in the case of co-precipitation, sample contamination or loss of polonium may occur through the experimental processes, and evaporation lead to not only time-consuming process but also may cause loss of polonium due to the low boiling point of polonium. Therefore, in order to compensate for these problems, an efficient polonium analysis method that directly collects polonium from the original sample without a pretreatment is required. In this study, 210Po in bottled drinking water sold in Korea was analyzed using alpha spectrometry. A high purity silver disc (99.99%) was inserted into a newly designed polonium deposition kit to quickly and conveniently collect polonium from a water sample. The polonium alpha detecting source was made effectively only by the spontaneous deposition method without a complicated pretreatment. The source was measured using a PIPS detector, and the radioactivity concentration of 210Po was calculated using 209Po as a yield tracer.
        337.
        2022.05 구독 인증기관·개인회원 무료
        Water electrolysis is a representative technology for tritium enrichment in water. Proton exchange membrane (PEM) water electrolysis has received great attention to replace traditional alkaline water electrolysis which generates concentrated tritiated water containing a large amount of salts. Nafion has been widely used as a polymeric electrolyte for the PEM electrolyzer. However, its low gas barrier property causes explosion, corrosion or degradation of electrolyzer. Furthermore, the traditional polymeric electrolytes have negligible differences in conductivity between hydrogen isotopes. To enhance the tritium separation by water electrolysis, we designed a composite membrane (Nafion/ hexagonal boron nitride (hBN)). The monolayer hBN has a high proton conductivity and gas barrier property, and the hBN can enhance conductivity differences between hydrogen isotopes. We prepared Nafion/hBN composite membranes, and water electrolysis performances and proton/deuterium separation behaviors were investigated.
        338.
        2022.05 구독 인증기관·개인회원 무료
        Activated corrosion products deposited on the reactor coolant system in a nuclear power plant should be removed to reduce the radiation exposure to workers. Chemical decontamination processes using organic acids have been widely applied to remove the activated corrosion products. However, they are highly corrosive to the base metal and generate a considerable amount of ion exchange resin waste, which is hard to be treated. In order to resolve this problem, KAERI has been developed a chemical decontamination process using chelate-free inorganic acid, HyBRID (Hydrazine Based Reductive metal Ion Decontamination) process. Especially, the Cyclic SP (Sulfuric acid/Permanganate)- HyBRID process was suggested as the decontamination process for applying to the remove the double oxide layer generated on the reactor coolant system in the pressurized water reactor (PWR). During the Cyclic SP-HyBRID process, the process is continuously applied without discharging or recharging of the decontamination process solution from the primary circuit. Thus, it is necessary to include the removal processes of the decontamination reagents middle of the Cyclic SP-HyBRID process, e.g., ‘Mn removal step’ for removing the permanganate ions and ‘hydrazine decomposition step’ for decomposition of the remaining hydrazine. During these removal processes, the metal ions can also be removed from the process solution. In this study, the behaviors of metals were investigated during the Cyclic SP-HyBRID process. The concentration changes of metal ions in the process solution were analyzed using atomic absorption (AA) spectroscopy. The metal precipitates generated during the process were characterized using X-ray diffraction (XRD) and Fourier Transform Infrared (FT-IR) spectroscopy. From the results of the analysis, it was observed that the metal ions dissolved in the process solution were converted into metal hydroxides and precipitated at the Mn removal process. It was confirmed by equilibrium calculation result that the OH− ions generated at the Mn removal can react with the metal ions and form the metal hydroxides. It is considered that this removal behaviors of the metals can contribute the decontamination performance.
        339.
        2022.05 구독 인증기관·개인회원 무료
        The Fukushima nuclear power plant accident, which was caused by the Great East Japan Earthquake on March 11, 2011, is of great concern to the Korean people. The scope of interest is wide and diverse, from the nuclear accident itself and the damage situation, to the current situation in Fukushima Prefecture and Japan, and to the safety of Japanese agricultural and fishery products. Concerns about nuclear safety following the Fukushima nuclear accident have a significant impact on neighboring nation’s energy policy. It has been 11 years since the Fukushima nuclear accident. In neighboring nation society, the nature and extent of damage caused by the Fukushima nuclear accident, the feasibility of follow-up measures at home and abroad, the impact on neighboring nations, and the direction of nuclear policy reflecting the lessons of the accident are hotly debated topics. Recently, the controversy has grown further as it is intertwined with Japan’s concerns about the safety and discharge of the contaminated water into the sea, and conflicts over domestic nuclear power policies. About 1.29 million tons, as of March 24, 2022, of the contaminated water are generated, which is close to the 1.37 million tons of water storage capacity. In response, the Japanese government announced on April 13, 2021, that it plans to discharge the contaminated water into the sea from 2023. This study evaluates the amount of the contaminated water that has passed through the ALPS and reviews the preparations and related facilities for ocean discharge after diluting the contaminated water. In addition, it is intended to forecast the various impacts of ocean discharge.
        340.
        2022.05 구독 인증기관·개인회원 무료
        The purpose of this study was to effectively purify U-contaminated soil-washing effluent using a precipitation/distillation process, reuse the purified water, and self-dispose of the generated solid. The U ions in the effluent were easily removed as sediments by neutralization, and the metal sediments and suspended soils were flocculated–precipitated by polyacrylamide (PAM). The precipitate generated through the flocculation–precipitation process was completely separated into solid–liquid phases by membrane filtration (pore size < 45 μm), and Ca2+ and Mg2+ ions remaining in the effluent were removed by distillation. Even if neutralized or distilled effluent was reused for soil washing, soil decontamination performance was maintained. PAM, an organic component of the filter cake, was successfully removed by thermal decomposition without loss of metal deposits including U. The uranium concentration of the residual solids after distillation is confirmed to be less than 1 Bq·g−1, so it is expected that the self-disposal of the residual solids is possible. Therefore, the treatment method of U-contaminated soil-washing effluent using the precipitation/distillation process presented in this study can be used to effectively treat the washing waste of U-contaminated soil and self-dispose of the generated solids.