검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 96

        21.
        2017.05 서비스 종료(열람 제한)
        우리나라는 반도체, 철강, 자동차, 선박 등의 제조업을 토대로 경제규모를 성장시켜왔으며, 성장에 비례하여 에너지 수입 의존도 또한 증가했다. 현재 우리나라는 에너지의 95% 이상을 수입하여 사용하고 있는 에너지 다소비 국가로써 2013년 기준 제조업 원자재의 전체 수입량은 하루 평균 약 1조원에 이르는 것으로 집계되었다. 하지만 국내에서 발생되는 폐기물의 약 50% 이상이 에너지 회수에 이용될 수 있음에도 불구하고 단순히 소각 및 매립으로 처리가 되고 있어 에너지 다소비 국가의 현실과는 대조적인 폐기물처리가 이루어지고 있음을 알 수 있다. 이에 환경부는 「자원순환기본법(2018.01.01. 시행)」을 마련하여 폐기물의 에너지화를 계획하고 있으며, 이와 관련해 소각으로부터 발생되는 열원, 온수, 증기 등의 에너지를 최대한 활용하여 그 효율에 따라 폐기물처분부담금을 감면해주는 방안을 구상하고 있다. 따라서 소각시설의 열에너지 회수효율 산정 및 산정을 위한 주요인자들의 과학적인 접근방법이 요구되었으며, 이에 본 연구에서는 열에너지 회수효율의 주요인자인 저위발열량 및 출열항목에 대하여 산정하고, 산정된 저위발열량 결과와 각 시설의 저위발열량 설계 값 및 발열량계측정값을 비교하여 타당성에 대하여 검토하고자 한다. 본 연구는 1차(2016.05.09.~2016.08.31.) 7개 시설(8호기), 2차(2016.09.05.~2016.10.30.) 4개 시설(9호기)로 진행하였으며, 대상 시설의 선정은 폐기물의 종류, 보일러의 설치형태, 소각로의 형태를 고려하여 선정하였다. 열에너지 회수효율의 산정을 위한 계측항목에 관련한 데이터를 일별로 수집하였으며, 계측 외 항목은 직접 측정하여 저위발열량 및 출열항목 등을 산정하였다. 대상 시설의 저위발열량 산정결과는 1차의 경우 2,776.6~3,881.4kcal/kg, 2차의 경우 1,921.5~5928.7kcal/kg으로 분포되는 것으로 나타났으며, 2차 대상시설 중 저위발열량 결과 값이 5928.7kcal/kg으로 산정된 시설의 경우 사업장폐기물 소각시설로 지정폐기물 투입비율이 100%인 것으로 나타났다. 연구결과, 지속적인 데이터 수집을 통해 출열항목을 산정하여 열에너지 회수효율을 극대화 시킬 방안을 마련해야 하며, 또한 과학적 근거를 수반한 저위발열량 산정방법을 마련해야 할 것으로 판단된다.
        22.
        2017.05 서비스 종료(열람 제한)
        우리나라는 2030년까지 모든 경제분야에 걸쳐 온실가스 배출을 약 37% 감축할 계획을 UNFCCC에 제출하였으며 이에 따라 보다 정확한 온실가스 배출량을 산정하는 것이 중요하다. 국내 발생되는 폐기물의 매립 억제정책으로 인해 폐기물의 재활용율은 향상되고 있지만 소각비율 또한 증가될 수 있다. 따라서 소각시설에서 배출되는 가스물질의 안정적인 관리가 요구되는 실정이다. 본 연구에서는 국내 생활폐기물 소각시설 3개소(4호기) 및 사업장폐기물 소각시설 6개소(8호기)를 대상으로 연소 후 최종 배출되는 가스성분을 분석・포집하였다. 가스상 물질을 안정적으로 포집하기 위하여 가스샘플링장치를 설계・제작하여 적용하였으며, 보다 신뢰성 있는 시료채취를 위하여 3시간, 6시간, 24시간 단위로 각각 포집하여 결과값을 비교하였다. 분석대상 물질은 CO, NOx, SOx 그리고 CO2 였으며 포집한 기체시료 중 14C 분석을 통해 바이오매스량을 구하였다. 명확한 바이오매스량을 분석하기 위하여 탄소동위원소를 이용한 가속기 질량분석기(Accelerator Mass Spectrometry)를 이용하였으며 바이오매스량을 제외한 총 온실가스배출량을 구하였다.
        23.
        2017.04 KCI 등재 서비스 종료(열람 제한)
        Recently, the concept of “waste minimization and a sustainable resource circulation society” has become a global issue as the key term waste management policy, the effective use of waste, has been emphasized. Research that converts wastes from incinerators into energy is actively underway as a countermeasure for this issue. The most important factor, the lower heating value (LHV), is the amount of heat (excepting the latent heat of water vapor) generated when the fuel is completely burned, and it is necessary to analyze the combustion performance and economic efficiency of waste incineration facilities. The current LHV estimation methods of the Dulong equation and calorimeter through sampling cannot produce results that reflect the operation status of the incineration facility and the waste characteristics. Consequently, an objective and quantitative LHV formula (LHVKorea) was derived based on the operating data from the domestic municipal solid waste incineration facilities in this study. Additionally, by comparing LHVKorea and LHVEU, the error range of the two formulas is analyzed. The average result of LHVKorea is 2,318kcal/kg (1,788 ~ 2,734 kcal/kg), and an error range of 5% appears between LHVKorea and LHVEU.
        24.
        2017.03 KCI 등재 서비스 종료(열람 제한)
        Recently, domestic waste policy has focused on resource circulation. In accordance with Article 3, Paragraph 2 of the “Enforcement Rules of Wastes Control Act”, which is targeted at waste incineration facilities, we established and announced methods for calculating the recovery and utilization rates of incineration-sourced heat in 2015. The lower heating value is important to energy recovery and utilization rate calculations. Hence, the lower heating values of the waste incineration facilities were estimated using the thermal method from KS B 6205. Heat loss decreases the heat recovery efficiency, and should be measured and evaluated. The surface temperatures of the incinerator and boiler are required to determine heat loss. Presently, the contact point temperature method is used to measure the surface temperature. It is difficult to apply this method to the average surface temperature of an incineration facility. In this study, 20 Korean waste incineration facilities were selected for heat loss estimates based on waste incineration temperature, incinerator type, and incineration capacity. Infrared thermal cameras were used to measure the surface temperatures of the waste incineration facilities.
        25.
        2017.03 KCI 등재 서비스 종료(열람 제한)
        The paper industry requires continuous automation of processes ranging from injection of raw materials to initial paper processes and final processing. Thus, it is a capital- and equipment-intensive industry that requires large investments in facilities and consumes significant amounts of energy for production. Since the concept of a 'Waste Minimization and Sustainable Resource Circulation Society' is key waste management policy, the effective use of waste has been emphasized. To this end, there is significant research on energy conversion in waste incineration plants. Domestically, there is a desire to review and improve sustainable technology development systems in order to maximize thermal energy recovery in waste incineration plants. Therefore, this study compared the energy recovery rate calculation methods currently used in eight paper industry incineration plants. The lower heating value and energy recovery & use rate calculation methods were applied in accordance with the “waste resource energy recovery & use calculation method” located in Paragraph 2 of Article 3 in the Enforcement Decree of the “Wastes Control Act” of 2015. Calculations made using the current method (on the basis of output) showed an average energy recovery rate of 78.6% (75.5 ~ 82.8%), whereas the waste resource energy recovery & use rate calculation method (based on volume used) produced an energy recovery rate of 53.3% (42.5 ~ 74.8%).
        26.
        2017.03 KCI 등재 서비스 종료(열람 제한)
        Response measures to the resource circulation society and the new climate plan must be prepared by the central government in conjunction with local governments. The future directions of such measures can be established by investigating and evaluating trends in waste disposal currently in use by various cities and provinces. Against this backdrop, the current status of municipal waste generation and disposal in 16 Korean cities and provinces was examined. Although the percentage of waste recycled has increased, the rate of increase is declining. The percentage of waste disposed of in landfills has declined over time, but some landfills have already reached their limits. The amount of waste incinerated has grown more than the amounts recycled or disposed of in landfills. It will soon be necessary to develop measures that further increase the percentage of waste disposed of via incineration and improve the recovery of incineration-related energy. All cities and provinces should strive to improve the operating performance of their incineration facilities while reducing operating costs.
        27.
        2016.11 서비스 종료(열람 제한)
        지금껏 안정적으로 폐기물을 처분해왔던 방법에 변화를 가져올 정책과 국제협정이 최근 제정 및 체결되었다. 첫 번째는 2016년 5월 29일 자원순환기본법이 제정・공포되어 2018년 1월 1일부터 시행될 예정으로 자원순환사회 기반을 구축하기 위한 제도적 기틀을 마련한 것이다. 지금까지 자원의 절약과 재활용촉진에 관한 법률에 의해 추진해오던 것에 비하면 자원순환에 관해서는 다른 법률에 우선하기에 폐기물 처분방법에 있어 변화가 있을 것으로 본다. 두 번째는 2015년 12월 프랑스 파리에서 열린 2020년 이후의 신기후체제가 논의되어 모든 국가가 온실가스 감축에 참여하는 파리협정을 체결하였다. 이로 인해 폐기물부문도 온실가스 감축을 위한 방안과 실행계획 마련이 있을 것으로 본다. 이 같은 정책과 국제협정이 지금껏 안정적으로 처분해왔던 폐기물관리에 일정부분 변화를 가져올 수밖에 없는 상황이다. 감량 목적의 단순 소각처분이 아닌 자원이 순환하고 온실가스 감축을 위해 에너지를 최대한 회수하기 위한 방안 마련이 필요한 것이다. 우리나라는 선진화된 폐기물정책 시행으로 인해 폐기물 감량이나 재활용에 있어서는 선도적 역할을 담당해오고 있으나 소각에너지 회수에 있어서는 미흡한 면이 있다. 이에 본 연구에서는 우리나라의 시도별 도시폐기물의 발생 및 처분 그리고 소각시설에 대한 현황을 2000년 이후 2014년까지 5년 주기의 변화 추이를 살펴봄으로써 앞으로 자원순환 정책과 기후변화 협약에 대응할 수 있는 방향성을 제언하고자 한다.
        28.
        2016.11 서비스 종료(열람 제한)
        최근 급속한 경제 성장과 소비 수준의 상승으로 폐기물 배출량이 급격히 증가했고, 질적으로도 다양화 되고 있다. 우리나라 폐기물 처리정책의 주요내용은 자원을 효율적으로 이용함으로써 자연으로부터의 자원채취를 최소화함과 동시에 자연으로 되돌려지는 폐기물을 최소화함으로써 자연환경을 보호하고 사람의 건강을 보존하는 것이다. 선․후진국을 막론하고 폐기물관리정책의 변화과정은 비슷하다. 이러한 폐기물의 적정처리와 국가 에너지자원의 활용측면에 있어서 매우 중요한 역할을 담당하고 있는 소각시설은 현재 정부가 추진 중에 있는 「자원순환사회전환촉진법」 제정에 따라 적지 않은 변화가 있을 것으로 판단된다. 「자원순환사회전환촉진법」은 자원 및 에너지 소비량의 증가에 따라 계속적으로 폐기물 발생량이 증가하고 있는 국내의 사회적 구조를 고려할 때 폐기물의 발생억제 및 순환이용 촉진 등 자원순환사회 실현을 위한 기반 마련을 위하여 반드시 필요한 제도임에 틀림없다. 자원순환 성과관리제를 통하여 검토되고 있는 폐기물처분부담금(소각 또는 매립)은 에너지를 회수하지 않는 단순 소각시설의 경우 재활용비용에 버금가는 소각세를 부과한다. 그러나 일정기준 이상 에너지를 회수하여 사용하는 소각시설은 폐기물처분부담금의 감면혜택이 부여됨으로써 폐기물로부터 에너지를 회수하는 에너지회수시설과 단순 소각시설의 차별화가 뚜렷이 구분될 것으로 판단된다. 이에 본 연구에서는 생활폐기물 소각처리 시설(2개소, 3호기)을 대상으로 2015년 「폐기물관리법」 시행규칙 제3조제2항에 따른 “폐자원에너지 회수・사용률 산정방법”에 따라 에너지회수율을 산정하였다. 각각의 저위발열량 및 에너지회수・사용률 산정인자(Ep, Ew, Ei, Ef)는 3개월 동안의 계측기 측정값과 현장측정(배출가스 조성, 방열손실, 바닥재 보유열 등)결과를 바탕으로 산출하였다. 폐자원에너지 회수・사용률 산정결과로는 A시설(1호기・2호기)의 경우 생산량 기준 98.6 %, 사용량 기준 26.9 %로 산정되었다. B시설(1호기)에서는 생산량 기준 99.0 %, 사용량 기준 81.9 %로서 생산량 및 사용량 모두 높은 비율을 나타났다. 반면, A시설에서는 생산량 대비 사용량 기준 27.3 %로서 낮은 유효사용률을 나타내었으며, 유효사용률을 높이기 위해서는 다양한 방안(소내 소비감소, 소각시설의 효율적 가동, 폐열보일러의 효율 향상, 안정적인 수요처 확보 등)을 강구할 필요가 있을 것으로 판단된다.
        29.
        2016.11 서비스 종료(열람 제한)
        일본의 경우 전국에 약 1,300여 개의 폐기물소각로가 운전되고 있고 하루에 20만톤의 폐기물이 소각 처리되고 있으며, 그 중에서 약 900여개의 소각로에서 폐열 에너지를 회수하고 있고, 약 1,400 MW 규모의 발전 설비가 설치되어 있는 것으로 나타나고 있다. 유럽에서는 MSW 소각에너지를 회수하여 일차에너지로 이용하는 양은 2007년도에 6.1 Mtoe를 기록한 것으로 추정되며, 이는 전년도에 비해 약 6.3% (361.9 ktoe)가 증가한 것으로 조사되었다. 2012년 기준으로 국내 폐기물 발생량의 약 6.0 %는 소각으로 처리하고 있다. 2012년 기준 운영되고 있는 생활 및 사업장폐기물 소각시설은 총 552개소(시설용량 32,130 ton/day)이며, 환경 및 에너지 수급 측면에서 WTE 기술이 점점 중요해지고 있지만 관련 기술수준 측면에서 최고기술 보유국 대비 66~72%, 기술격차는 6~7년 정도가 존재하여 지속적인 연구개발 투자가 필요하다. 따라서 본 연구에서는 폐기물소각시설 발전효율을 향상시키기 위해 열 회수능력 강화와 관련하여 급수예열 장치와 저공기비연소의 활용 및 증기의 효율적 이용과 관련하여 저온촉매탈질을 활용하여 발전효율 향상효과를 분석하였다. 급수예열장치 출구배기가스 온도를 300, 260, 230, 210, 190℃까지 저온화 함에 따라 기준 배기가스 온도인 250℃의 결과와 비교하면, 250℃ 이상에서는 보일러 효율이 약 5%가 감소하였으며, 250℃ 이하로 낮추어 보일러 효율을 산정한 결과 저위발열량 2,300 kcal/kg, 출구온도 190℃에서 약 6% 보일러 효율이 증가되는 것으로 나타났다. 연소 공기를 기존의 평균값 1.8에서 1.0까지 감소시키는 경우 저위발열량 값에 따라 차이는 있지만 보일러 효율의 경우 최대 6.2%까지 증가하는 것으로 나타났으며, 발전효율의 경우 최대 1.6%까지 증가가 가능한 것으로 나타났다. 탈질을 위해 저온촉매를 적용한 경우 저위발열량 2300 kcal/kg, 촉매탑 입구온도 200℃에서 180℃까지 10℃ 간격으로 변화시킨 결과, 최소 0.19%에서 최대 0.79% 발전효율을 증가시킬 수 있는 것으로 나타났다.
        30.
        2016.11 서비스 종료(열람 제한)
        현재 국내 폐기물은 발생억제(Reduce), 재이용(Reuse), 재활용(Recycle)의 3R 정책을 바탕으로 발생량 감축 및 재활용을 유도하고 있다. 하지만 재활용이 불가능한 상태의 폐기물과 재활용처리 후 발생하는 부산물 등은 최종적으로 소각과 매립을 통하여 처리되고 있다. 이처럼 소각처리 될 수밖에 없는 폐기물은 단순 소각처리 되는 양을 최소화하고 연소과정에서 발생되는 에너지를 회수(Recovery)하여 열 또는 전력에너지로 적극 활용해야 할 필요가 있다. 하지만 현행 에너지 회수기준의 회수율 산정 방법은 생산에너지를 기준으로 하여 생산 후 버려지는 에너지도 포함됨으로써 실질적인 회수로 판단하기에 한계가 존재한다. 즉, 현행 에너지 회수기준은 회수율 증진을 위한 기술개발 및 시설개선 등과 같은 도입취지와 목적을 충분히 반영하지 못하고 있는 실정이다. 또한 에너지회수율 산정의 핵심 매개변수인 폐기물 저위발열량에 대한 측정 및 분석 방법의 명확한 공통기준이 없어 객관성이 부족한 상황이다. 이에 2015년 「폐기물관리법」 시행규칙 제3조제2항 “폐자원에너지 회수・사용률 산정방법”에서는 폐기물 소각 처리를 통하여 회수되는 에너지 중 실제 사용되는 에너지의 비율을 바탕으로 하는 에너지 회수・사용률 산정방법과 투입 폐기물로부터 기원하는 정확한 투입에너지 산정을 위한 저위발열량 산정방법을 제정・고시하였다. 본 연구에서는 새로 제정된 “폐자원에너지 회수・사용률 산정방법”을 바탕으로 국내 사업장폐기물 소각시설에서의 폐기물 저위발열량과 에너지 회수・사용률을 산정하였다. 산정에 요구되는 데이터는 3개월간의 업체 내실제 계측데이터를 활용하였으며, 계측이 불가능한 항목은 현장 측정 결과를 적용하였다. 대상시설은 스토커소각로 3기(시설 A, B, C)와 로터리킬른-스토커 병합방식 소각로 1기(시설 D)로 하였으며, 주별・월별・분기별로 구분하여 산정 결과를 도출하였다. 분기별 산정결과 폐기물 저위발열량의 경우 시설 A, B, C, D 각각 3,684kcal/kg, 2,960kcal/kg, 3,081kcal/kg, 2,794kcal/kg로 산정되었으며, 에너지회수・사용률은 각각 54.2%, 54.6%, 64.7%, 52.1%로 산정되었다. 이러한 결과는 에너지생산량 기준의 에너지회수율 대비 약 5∼20% 차이를 나타냈으며, 에너지회수・사용률을 높이기 위해서는 생산된 에너지 중 판매량을 최대화 하는 것이 가장 중요하고 효과적일 것으로 판단된다. 또한 장기적으로 보조연료 투입량과 전력 사용량 감축을 위한 기술개발과 시설공정 및 운영방식의 개선이 필요할 것으로 사료된다.
        31.
        2016.11 서비스 종료(열람 제한)
        ‘전국 폐기물 발생 및 처리현황’(환경부, 2014)에 따르면, 국내의 전국 폐기물 총 발생량은 매년 증가하는 추세이다. 건설 폐기물을 포함한 ‘14년도 총 폐기물 발생량은 388,486톤/일에 달하며, 지정폐기물을 포함하면 폐기물 발생량은 더 증가한다. 이렇게 발생한 폐기물은 매립, 소각, 재활용, 해역배출로 처리되었다. 하지만 국내의 육상 폐기물 해역배출은 런던협약에 ‘16년부터는 전면 금지되었으며, 매립과 재활용을 통한 폐기물의 처리는 한계가 있다. 지속적으로 발생량이 증가하는 폐기물의 처리와 지정폐기물, 재활용 금지 및 제한대상 폐기물을 처리하기 위하여 폐기물의 소각처리가 필수적으로 요구된다. 국내에서는 정책적으로 폐기물 소각시설의 폐자원에너지 회수와 사용에 대해 집중하고 있으며, 2015년에 폐기물 소각시설의 소각열에너지 회수・사용률 산정방법을 확정하여 2018년 1월 1일부터 자원순환기본법을 통해 시행할 것을 예고하였다. 사업장폐기물 소각시설의 소각열에너지 회수・사용률 산정방법에 따르면 열정산법을 이용해 입열과 출열을 산출하여 소각시설의 효율을 계산한다. 소각로의 방열손실은 에너지의 회수 효율을 낮추는 출열 항목 중 한가지로 각 시설마다 측정하여 평가되어야 한다. 현재 방열손실 평가를 위한 소각로의 벽면 온도 측정은 지점측정법을 이용하여 실측되고 있다. 하지만 접촉식 온도 측정은 대상의 접촉 지점마다 온도가 다르게 측정 될 수 있으므로 대상 시설의 평균 표면온도를 정확하게 측정하는 것이 어렵다. 비접촉 방식으로 온도를 측정하는 적외선 열화상 카메라는 넓은 면적의 온도를 동시에 측정 가능하며 대상 시설의 평균 온도를 비교적 정확하게 측정 할 수 있다. 따라서 본 연구에서는 폐기물 소각시설의 출열 항목 중 방열손실의 측정 및 평가를 위해 적외선 열화상 카메라를 이용하였으며, 소각로 표면 온도 측정방법과 소각시설의 방열손실 산정 방법을 정립하였다.
        32.
        2016.07 KCI 등재 서비스 종료(열람 제한)
        The lower heating value is the basic unit to calculate annual energy in estimating an energy gain factor. Reliability of an energy gain factor depends on the accuracy of the lower heating value. However, the deviation of heating value is large, and there is no common standard. Thus, the present methods of estimating the lower heating value (calorimeter method, ultimate analysis method, etc.) are inferior in accuracy. Besides, the conventional estimation method cannot reflect the waste's inhomogenous properties or seasonal effect. Hence, this study estimated the lower heating value on the basis of relation between heat input and heat output in equilibrium state by using the law of conservation of energy and the first law of thermodynamics for industrial waste incineration facilities (57 facilities) currently in operation. In the case of self-contained boilers, the lower heating value was an average of kcal/kg (1,984-6,476 kcal/ kg), and in case of separable boilers, the lower heating value was estimated to be an average of 3,787 kcal/kg (1,621- 486 kcal/kg).
        33.
        2016.02 KCI 등재 서비스 종료(열람 제한)
        This study aims to analyze region-specific trends in changing greenhouse gas emissions in incineration plants of local government where waste heat generated during incineration are reused for the recent five years (2009 to 2013). The greenhouse gas generated from the incineration plants is largely CO2 with a small amount of CH4 and N2O. Most of the incineration plants operated by local government produce steam with waste heat generated from incineration to produce electricity or reuse it for hot water/heating and resident convenience. And steam in some industrial complexes is supplied to companies who require it for obtaining resources for local government or incineration plants. All incineration plants, research targets of this study, are using LNG or diesel fuel as auxiliary fuel for incinerating wastes and some of the facilities are using LFG(Landfill Gas). The calculation of greenhouse gas generated during waste incineration was according to the Local Government's Greenhouse Emissions Calculation Guideline. As a result of calculation, the total amount of greenhouse gas released from all incineration plants for five years was about 3,174,000 tCO2eq. To look at it by year, the biggest amount was about 877,000 tCO2eq in 2013. To look at it by region, Gyeonggido showed the biggest amount (about 163,000 tCO2eq annually) and the greenhouse gas emissions per capita was the highest in Ulsan Metropolitan City(about 154 kCO2eq annually). As a result of greenhouse gas emissions calculation, some incineration plants showed more emissions by heat recovery than by incineration, which rather reduced the total amount of greenhouse gas emissions. For more accurate calculation of greenhouse gas emissions in the future, input data management system needs to be improved.
        34.
        2015.11 서비스 종료(열람 제한)
        2013년 UNEP(United Nations Environment Programme)에서 미나마타 협약이 채택되어 수은의 전생애(Life-cycle) 관리를 요구하는 등, 수은(Mercury)은 장거리이동 및 생태계 축적 등으로 인해 인간의 건강 및 환경에 악영향을 끼칠 수 있기 때문에 국제적으로 우선순위 관리대상 물질로 관리되고 있다. 이러한 국제적인 움직임에 대응하기 위해 국내에서도 “국가 화학물질 기본계획”, “수은 폐기물의 환경 친화적 관리를 위한 기술 지침서” 및 “수은관리 종합대책” 등 다양한 제도 및 처리 방안을 준비하고 있다. 따라서 이러한 국내・외 수은 협약 및 정책에 대응하기 위해서는 국내 폐기물의 수은 배출실태 조사가 필요한 실정이다. 따라서 본 연구에서는 국내 수은 함유 폐기물의 배출시설 중 문헌조사와 국립환경과학원과 협의하여 수은 배출량이 많을 것으로 예상되는 산업폐기물 소각시설과 의료폐기물 소각시설을 선정하여 수은 물질흐름을 조사하였다. 본 연구에서는 2014년 대전광역시 소재의 산업폐기물소각시설(A시설)과 경상북도 경산시 소재의 의료폐기물소각시설(B시설)을 대상으로 수은의 물질흐름을 분석하고자 하였다. 본 연구에서는 산업폐기물 소각시설(A시설)과 의료폐기물 소각시설(B시설)의 공정도를 중심으로 연속3일 샘플링을 실시하였다. 따라서 물질흐름분석의 경계는 소각시설 공정도로 설정하여 연구를 진행하였다. 수집된 조사 데이터와 샘플링 데이터를 토대로 STAN 2.5 소프트웨어를 이용하여 물질흐름을 분석하였다. 본 연구 결과, 산업폐기물소각시설(A시설)의 수은처리량은 40.48±14.77 g/day으로 분석되었으며, 수은배출량 중 대기로 배출되는 양이 가장 많았으며 바닥재, 폐수처리슬러지로 많이 배출되는 것으로 분석되었다. 의료폐기물 소각시설(B시설)의 수은처리량은 DSI/FF/Scrubber기준(0.178)으로 54.16±8.59 g/day, DSI/Carbon Injection/FF(4.87)기준으로 124.54±37.46 g/day 으로 분석되었으며, 수은의 상당량이 내부에 축적되지 않고 대기 중 배출, 폐수 그리고 비산재로 많이 배출되는 것으로 분석되었다.
        35.
        2015.11 서비스 종료(열람 제한)
        적외선 열화상 카메라는 피사체의 실물을 보여주는 것이 아닌 피사체의 표면으로부터 복사(방사)되는 전자파의 일종인 적외선 파장 형태의 에너지(열)을 검출, 피사체 표면 복사열의 강도를 측정하여 강도의 양에 따라 각각의 다른 색상(false or pseudo color)으로 표현하여 주는 카메라이다. 이는 대상물체 또는 임의의 범위에 존재하는 열의 차이(온도)를 비접촉 방식으로 측정이 가능하다. 현재 방열손실의 온도 측정은 KS법에 의한 지점별 온도측정을 하고 있으나, 이는 접촉하는 지점마다 온도가 달라 평균적인 온도를 구하는 데는 문제점이 있다. 이를 개선하기 위해 공정별 표면온도를 고분해능 검지기를 이용한 적외선열화상카메라로 방열손실률을 측정 분석하고자 한다. 본 연구에서는 적외선 열화상 카메라 Laser Marker(-60℃ ~ 760℃)를 이용하여 Laser의 표면온도를 측정할 수 있는 미국제조회사인 FLIR社의 T650sc 모델을 이용하여 사업장 폐기물 소각시설의 소각로의 벽면의 온도를 측정하였다. 측정된 온도를 이용하여 복사 열 전달률을 구하기 위한 Stefan-Boltzmann법칙과 대류 열 전달율을 구하기 위한 Newton의 냉각 법칙과 소각로의 면적을 이용하여 로벽의 방열되는 손실을 계산해 보고자한다. 국내의 사업장 폐기물 소각시설 78개 호기 중 소각 방법별(일반소각, 고온소각), 소각로 타입별(Stoker, R/K + Stoker, R/K)로 나누어 대상 시설을 선정하여 현장실측을 진행하였다. 계산 시 사용되는 데이터는 1년간 자료를 이용하여 설문조사된 데이터를 바탕으로 계산되었으며 이를 이용하여 방열손실 계산에 적용하여 분석하였다.
        36.
        2015.09 KCI 등재 서비스 종료(열람 제한)
        This study analyzed response characteristics of Nitrogen Oxide according to injection location and change of injectionamounts by spraying food waste on the combustion platform and the latter part of the first combustion chambers inincinerators. The analytical results have found to have no major difficulties in keeping more than 850oC, the legal standardof the 2nd combustion chamber according to injection of food waste in all the test subject facilities. For spraying foodwaste in the combustion platform in the first combustion chambers, the removal efficiency of 14.76% was shown as NSRis 2.98. For spraying food waste in the latter part of the first combustion chambers, the removal efficiency of 46.40%was shown as NSR is 0.95. On the other hand, when food waste of 3 tons per hour respectively is sprayed on thecombustion platform and the latter part of the first combustion chambers, the highest removal efficiency of 84.97% wasshown as NSR is 1.02.
        37.
        2015.07 KCI 등재 서비스 종료(열람 제한)
        This study attempted to find an optimum operation codition for co-incineration of food waste and industrial wastes, focusing on injection position and rate. As the result of analysis, during injection of food waste incineration facilities, atmospheric pollutant standard satisfied all requirement. However when injected into the primary combustion chamber, the dioxin exceeded emission standard. This result has been determined that contaminants generated as processing the more amount (150 ton/day) than the designed capacity (72 ton/day) emitted and exceeded not completely removed from the control facilities.
        1 2 3 4 5