검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 283

        25.
        2022.10 구독 인증기관·개인회원 무료
        Plastic scintillators can be used to find radioactive sources for portal monitoring due to their advantages such as faster decay time, non-hygroscopicity, relatively low manufacturing cost, robustness, and easy processing. However, plastic scintillators have too low density and effective atomic number, and they are not appropriate to be used to identify radionuclides directly. In this study, we devise the radiation sensor using a plastic scintillator with holes filled with bismuth nanoparticles to make up for the limitations of plastic materials. We use MCNP (Monte Carlo N-particle) simulating program to confirm the performance of bismuth nanoparticles in the plastic scintillators. The photoelectric peak is found in the bismuth-loaded plastic scintillator by subtracting the energy spectrum from that of the standard plastic scintillator. The height and diameter of the simulated plastic scintillator are 3 and 5 cm, respectively, and it has 19 holes whose depth and diameter are 2.5 and 0.2 cm, respectively. As a gamma-ray source, Cs-137 which emits 662 keV energy is used. The clear energy peak is observed in the subtracted spectrum, the full width at half maximum (FWHM) and the energy resolution are calculated to evaluate the performance of the proposed radiation sensor. The FWHM of the peak and the energy resolution are 61.18 keV and 9.242% at 662 keV, respectively.
        26.
        2022.10 구독 인증기관·개인회원 무료
        Radiological characterization is important in decommissioning and dismantling of nuclear facilities, in order to assess the radioactivity concentration, classify the wastes, and secure workers’ safety. The Some components such as Reactor Pressure Vessel (RPV) in nuclear facilities has dose rate higher than Sv/hr, thus in-situ gamma spectroscopy systems suffer from a very high count rate which causes energy resolution degradation, photo-peak shift, and count loss by pile-up and dead-time. The system must be operated in a very high count rate, in order to measure spectra precisely and to quantify radionuclide contents. In order to apply in-situ measurement in high radiation dose rate environment, the sensor, front-end electronics, and data acquisition (DAQ) should be carefully selected and designed as well as precise design of collimators and radiation shield. In this paper, the components of the detector system were selected and performance was evaluated in a high count rate before design the collimator and shield. A LaBr3 coupled with a PMT having short decay time constant (16 nsec) was selected for high count rate application, and two different amplifiers (a conventional charge sensitive preamplifier with 50 usec decay time constant, and wide-band voltage amplifier) were tested. As DAQs, DT5781 (14 bit, 100 MS/s, CAEN) of Pulse Height Analysis (PHA) which is conventionally used signal processing method in the gamma spectroscopy, and DT5730 (14 bit, 500MS/s, CAEN) of Pulse Shape Discrimination (PSD) which is similar to Charge to Digital Convertor (QDC) were used. The number of photons incident to the detector was varied by changing the detector-source distance with Certificate Radiation Material (CRM), and compared to the output count rate. The count rate capability, and energy resolution with different amplifier and DAQ was evaluated. Additionally, the performance of DAQs in extremely high count rate was evaluated with signal data generated by the emulator which can simulate the detector signal waveforms fed into the DAQ based on the measured spectrum.
        30.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Heavy bitumen scattered in the underground sedimentary layer is a kind of unconventional energy source, and by extracting it, a production well is excavated in the sedimentary layer and high-temperature and high-pressure steam is injected to reduce the viscosity of bitumen and recover it to the ground steam assisted method is applied. As a recovery method that uses the steam effect of the dilution effect of solvent injection, it is a recovery method that can increase thermal efficiency. In this study, the process system of the central processing facility(CPF) of the hybrid steam-solvent recovery method that injects solvent into the existing steam assisted method was analyzed, and the core facilities for each process were identified, and hybrid steam-solvent recovery compared to the existing steam assisted method. In the case of the method, it was evaluated that the amount of steam supply and all utility costs decreased according to the solvent injection.
        4,000원
        31.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 도시 과밀화와 건축물 고층화로 인해 빌딩풍에 의한 시설 피해는 물론 보행자의 안전을 위협하는 풍환경에 대한 우려 가 커지고 있다. 빌딩풍 피해 저감을 위한 방안으로 건축물 주변 풍환경 평가를 통해 도시의 풍환경을 개선하는 것이 중요하다. 이를 위해 풍동실험을 대체하거나 보완하는 수단으로 최근 전산 유체역학 기법 (CFD)의 적용이 받아들여지고 있으며, 국토교통부가 보행 자 풍환경 평가를 위한 CFD 활용 가이드라인을 제시한 바 있다. 본 논문에서는 이 가이드라인의 적정성을 평가하기 위한 전산해석을 수행하였다. CFD 결과의 검증을 위해 일본 건축학회가 제시한 모형과 풍동실험 결과를 사용하였다. 평가결과 일부 위치에서 풍동 실 험값과 CFD 결과의 풍속 차이는 있으나 격자의 상세도가 정확도에 미치는 영향과 CFD를 이용한 보행자 풍환경 평가 가능성을 확인 하였다. 또한, 건물 주위의 상승풍, 하강풍 및 와류 등으로 인한 돌풍이 잘 모사되고 있음을 확인하였다.
        4,000원
        32.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is aimed to analyze fishermen’s perception and the economic feasibility of inland waters ranching project on the branches of Geum River. Analysis of fishermen’s perception on the branches of Geum River showed that fishermen had an affirmative response on the inland freshwater ranching project related issues such as fisheries resources enhancement, necessity of project, economic achievement as so on. The model of inland waters ranching project on the branches of Geum River is designed to fisheries resources enhancement, habitat compositiom, ecology tours, use and management of resources. The results of the economic feasibility of inland waters ranching project on the branches of Geum River were internal rate of return (IRR) was 18.43%, a benefit-cost ratio was shown to be 1.54, net present value (NPV) was 4,929 thousand won, which indicates the economic feasibility of inland waters ranching project.
        5,500원
        35.
        2022.05 구독 인증기관·개인회원 무료
        The feasibility study of synthesizing graphene quantum dots from spent resin, which is used in nuclear power plants to purify the liquid radioactive waste, was conducted. Owing to radiation safety and regulatory issues, an uncontaminated ion-exchange resin, IRN150 H/OH, prior to its use in a nuclear power plant, was used as the material of experiment on synthesis of graphene quantum dots. Since the major radionuclides in spent resin are treated by thermal decomposition, prior to conducting the experiment, carbonization of ion-exchange resin was performed. The experiment on synthesis of graphene quantum dots was conducted according to the general hydrothermal/solvothermal synthesis method as follows. The carbonized ion-exchange resin was added to a solution, which is a mixture of sulfuric acid and nitric acid in ratio of 3:1, and graphene quantum dots were synthesized at 115°C for 48 hours. After synthesizing, procedure, such as purifying, filtering, evaporating were conducted to remove residual acid from the graphene quantum dots. After freeze-drying which is the last procedure, the graphene quantum dots were obtained. The obtained graphene quantum dots were characterized using atomic force microscopy (AFM), Fourier-transform infrared (FT-IR) spectroscopy and Raman spectroscopy. The AFM image demonstrates the topographic morphology of obtained graphene quantum dots, the heights of which range from 0.4 to 3 nm, corresponding to 1–4 graphene layers, and the step height is approximately 2–2.5 nm. Using FT-IR, the functional groups in obtained graphene quantum dots were detected. The stretching vibrations of hydroxyl group at 3,420 cm−1, carboxylic acid (C=O) at 1,751 cm−1, C-OH at 1,445 cm−1, and C-O at 1,054 cm−1. The identified functional groups of obtained graphene quantum dots matched the functional groups which are present if it is a graphene quantum dot. In Raman spectrum, the D and G peaks, which are the characteristics of graphene quantum dots, were detected at wavenumbers of 1,380 cm−1 and 1,580 cm−1, respectively. Thus, it was verified that the graphene quantum dots could be successfully synthesized from the ionexchange resin.
        36.
        2022.05 구독 인증기관·개인회원 무료
        APro, a modularized framework of the process-based total system performance assessment, has been developed by KAERI to simulate the radionuclide transport in geological disposal system considering multi-physics phenomena. However, the target problem including more than 10,000 boreholes and over 100,000 years of simulation time is computationally challenging to deal with numerical solvers provided by COMSOL Multiphysics constituting APro. To alleviate the computational burden, machine learning (ML) techniques have been studied to develop a surrogate model replacing the heavy computation part. In recent studies, attempts have been made to integrate the knowledge of physics and numerical methods into the ML model for partial differential equations (PDEs). Unlike conventional ML approaches solely relying on data-driven method, the integration can help to make the ML model more specialized for solving PDEs. The hybrid neural network (NN) solver method is one of the strategies to develop more efficient PDE solver by interleaving NN with numerical solvers like finite element method (FEM). The hybrid NN model on the premise of numerical solver is easier to train and more stable than the purely data-driven model. For example, one previous study has used the hybrid NN model as a corrector for an incomplete numerical solver for the advection-diffusion problem. In every time step of simulation, NN corrects the error of incomplete solution obtained by a relaxed numerical solver with coarse meshing. The simulation in the next time step starts from the corrected solution, so NN interacts with the numerical solver iteratively. If the corrector is successfully trained, the incomplete but fast solver with corrector can provide reliable results comparable to the original massive solver. This study adopts the hybrid concept to develop a surrogate model for the near-field region, which is the heavy computation part in the simulation of geological disposal system. Various incomplete models such as coarse meshing or emptying the borehole domain are studied to construct a hybrid NN solver. This study also covers how to embed the hybrid NN in COMSOL Multiphysics to train and use it during the simulation.
        37.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study deals with replacement analysis of deteriorated equipment for improving productivity of production system. Frequent breakdown of the deteriorated equipment causes a situation that reduces productivity such as low product quality, process delay, and repair cost. However, the replacement of new equipment will be required a high initial investment cost, so it is important to analysis the economic feasibility. Therefore, we analyze the effect of the production system due to the aging effect of the equipment and the feasibility of equipment replacement based on the economic analysis. The process flow, working time, logistics movement, etc. are analyzed in order to build the simulation modeling for a ship and land switchboard production system. Using numerical examples, the economic feasibility analysis of equipment replacement through replacement of existing deteriorated equipment and additional arrangement of new facilities is performed.
        4,000원
        38.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The objective of this study is to evaluate the feasibility of applying properties of asphalt binder other than absolute viscosity (AV) to evaluate the rejuvenation level of the binder from reclaimed asphalt pavement (RAP) in recycled asphalt mixtures (RAMs). METHODS : The G*/sin and critical temperature (CT) for determining high performance grade by DSR, and the large molecular size (LMS) using gel-permeation chromatography (GPC) were measured simultaneously with the AV of two virgin asphalt binders (58–22 for RAM and 64–22 for normal mix) and recovered binders from a RAP and four RAMs. Based on mix design, 20%, 30%, 40%, and 50% recycled RAMs were prepared, and the deformation strength (SD) of the RAMs were measured. The AV, LMS, G*/sin , and CT were measured from the recovered binders from each RAM of the SD-tested specimens. Regression analyses were performed between the LMS and AV, G*/ sin and AV, and CT and AV to determine the correlation of each property with the AV. The feasibility of evaluating the rejuvenation level of the RMA binder using the three properties (LMS, G*/sin , and CT) was evaluated. Regression analysis was performed between SD and AV, and the feasibility of using SD instead of AV ≤ 5,000 poise (p) was analyzed to evaluate the rejuvenation level of the RAM. RESULTS : The AV, LMS, G*/sin , and CT of RAM binders increased with the recycling ratio. Mixes with recycle ratios of 20% and 30% satisfied the AV ≤ 5,000 p criterion, unlike mixes with higher recycle ratios. The regression analysis results showed that the R2 values between the LMS and AV, G*/sin and AV, and CT and AV exceeded 0.96. Since these regressions showed extremely high R2 values, it can be inferred that the estimation of binder rejuvenation level using the LMS, G*/sin and CT, i.e., instead of the AV criterion, is applicable. Because SD exhibits high correlation with the binder stiffness, and the regression between SD and AV indicated R2 > 0.98, SD can be applied instead of the AV for binder rejuvenation level estimation. The main advantage of using the LMS and SD is to estimate the binder rejuvenation level without recovering the binder from the mix. CONCLUSIONS : For the binder rejuvenation level estimation of recycled mixes, it is concluded that the LMS by GPC and G*/sin and CT by DSR, and SD can be applied instead of the AV criterion. However, since this study was performed using limited materials, further studies involving many other materials may be performed to generalize the current conclusion.
        4,000원
        39.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        선박으로부터 발생하는 온실가스 배출을 저감하기 위한 규제가 점차 강화되고 있다. 현존선에서도 EEXI(Energy Efficiency Existing Index)가 도입되었으며 이와 같은 온실가스 배출 감축목표를 달성하기 위해 다양한 연구가 진행되고 있다. 본 연구에서는 국제항 해에 종사하는 현존선 중 자동차운반선에 태양광 발전시스템을 적용하여 연료유 사용량을 줄임으로써 온실가스 배출이 저감될 수 있는 시스템을 제안하였다. 제안된 태양광 발전시스템은 태양광 모듈, 에너지저장시스템, 전력변환장치 등으로 구성되었으며, 본 시스템의 적 용 가능성을 확인하기 위해 전력전자프로그램을 통해 시스템을 모델링하였으며, 시뮬레이션을 실시하였다. 또한, 실제 선박에 적용하기 위한 타당성 검증을 위해 경제성 분석을 실시하였으며, 약 11년 이후 경제성 부분에서도 유의미한 결과가 도출됨을 확인할 수 있었다.
        4,000원
        1 2 3 4 5