최근 초고층 건물의 수가 증가하면서 건축 및 토목 구조물의 내진 및 내풍 설계의 중요성이 점차 강조되고 있다. 본 연구에서는 중력하중을 지지하는 대상 구조물에 대하여 지진하중 및 풍하중의 작용 전후를 비교하고 그 영향을 요구 강재량으로 평가 하였다. 본 연구에서는 서로 다른 높이를 갖는 다수의 철골 중간모멘트 골조를 대상으로 내진 및 내풍 설계를 수행하여 높이에 따른 영향을 평가 하였다. 본 연구를 진행함에 있어 평면의 형상은 SAC Project (Gupta and Krawinker, 1999)를 참고하였다. 3, 6, 9, 12, 15층 총 5가지 높이의 구조물에 대하여 해석을 진행하였으며 층고는 4m로 하였다. 사용한 지진하중은 등가정적해석법을 이용하여 정적 지진하중을 사용하였고 풍하중은 KBC2009에 따른 정적 풍하중을 사용하였다. 각각의 대상구조물의 강재량을 비교해본 결과, 구조물의 높이가 증가함에 따라 풍하중과 지진하중의 영향이 커지는 경향을 보이고, 풍하중 영향의 증가폭이 더 빠르게 커짐을 알 수 있다. 이는 높이가 높아질수록 지진하중에 대한 고려와 함께 풍하중에 의한 효과를 고려해야할 필요가 있음을 의미한다.
The conventional brace system is generally accepted lateral load resisting system for steel structures due to efficient story drift control and economic feasibility by frame materials decrease. But the lateral stiffness of the brace decreases following buckling in this system and buckling causes unstable structures with strength deterioration hysteresis performance. Buckling restrained brace system that performs stable behavior after yielding of core element prevented from buckling by tube element is better than conventional brace system in point of earthquake energy absorbing capacity. In this study, the seismic performance of the multi-story steel frames applied for brace and buckling restrained brace is respectively analyzed, so that, the damage of two systems is quantitatively evaluated by analyzing energy absorption capacity.
In this study, the seismic performance of weak-axis column-tree moment resisting frame was experimentally investigated using RBS conception. As a result, two specimens were showed that enough energy dissipation and plastic rotation capacity. But bolt-slip didn’t happen anymore after story drift ratio of 3%.
In this study, the seismic performance of weak-axis steel moment connections was investigated through cyclic testing of two full-scale specimens by reducing flange plate thickness. As a result, two specimens were showed that enough energy dissipation capacity and ductility.
파랑하중의 입사각의 변화가 직사각형 콘크리트 플로팅 함체 위에 있는 3층 철골 모멘트 연성골조의 모멘트에 미치는 영향을 알아보기 위하여, 파도 주기 5초부터 15초까지 2초 간격으로 동적 유체해석을 수행하였다. 길이방향에 대하여 입사각이 0˚, 30˚, 60˚, 90˚로 증가함에 따라 RAO-Roll에 의한 영향이 증가하는 것으로 나타났다. 파압에 의하여 입사각이 0˚인 경우 길이방향의 골조 모멘트가 크게 증가하였으며, 입사각이 증가함에 따라 파압에 의한 모멘트가 감소하는 것으로 나타났다. 또한 함체의 피칭과 롤링에 의하여 발생되는 가속도 성분에 의하여 상부 철골 모멘트 연성 골조의 모멘트를 산정하였으며, 입사각이 90˚로 작용한 경우에 모멘트의 증가량이 입사각 0˚의 경우보다 크게 나타났다.
플로팅 함체의 강성변화가 상부 철골모멘트연성골조에 미치는 영향을 확인하기 위해 함체의 높이를 1.5m, 2.0m, 2.5m로 변화시키면서 파랑하중 3초에서 15초에 대하여 동적 유체 해석과 그에 따른 파력을 산정하고 정적 구조 해석을 수행하였다. 해석결과, RAO-피치와 상부 골조의 모멘트 증가량이 선형적인 관계이고 함체의 곡률이 구조물의 강성과 반비례함을 확인하였다. 이러한 선형적 결과를 종합하여, 임의의 함체에 대한 상부골조의 해석 결과를 이용하여 함체 높이가 다른 경우에도 상부 골조의 모멘트를 추정하는 절차를 제안하였으며, 추정결과가 해석결과와 상당히 잘 일치함을 확인하였다.