검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 31

        23.
        2010.05 구독 인증기관·개인회원 무료
        Neuropeptides are the largest group of neurohormones that act in intercellular communication to regulate various physiological and behavioral events during development and reproduction in animals. One of these families is Pyrokinin/PBAN (Pheromone Biosynthesis Activating Neuropeptide) family defined by a similar 5-amino-acid C-terminal sequence (FXPRLamide) that is the active core fragment for these peptides. This motif has been identified from a variety of insect orders, and even a crustacean species. This family of peptides has been implicated in various physiological functions: 1) moth pheromone biosynthesis, 2) larval melanization, 3) moth embryonic and pupal diapause, 4) visceral muscle contraction in the cockroach, 5) fly puparium formation in different insect species. To date, ~159 PBAN/Pyrokinin family peptides have been identified from 40 species. It is one of the largest neuropeptide families in insects; however, the physiological function of most of these peptides is unknown. The mechanism of PBAN control over pheromone production is only well defined for sex pheromone biosynthesis in a limited number of lepidopteran moths. No other insect groups have been reported to regulate pheromone biosynthesis using PBAN. Conventional insecticides target synapses and/or sodium channels that result in neurotoxicity in the nervous system. Unfortunately, this mode of action affects non-target animals as well. These methods remain the major tool for pest control, and the side effects cause many global problems that result in increased environmental and human health expenses. Therefore, we are faced with a requirement to develop new targeted control agents that will lead to pesticides with new modes of action. This is not impossible, but not easy. Every species-specific neuropeptide is expected to play a critical physiological function in metamorphosis and development of insects. There are no exceptions. Our long-standing question is – “how can interference/disruption ofthe insect (neuro)hormonal system be used to discover novel control tools”. To solve this question a novel approach is being applied for finding and screening novel agonist and/or antagonist to gene products, neuropeptide and receptor, from the in vitro system and through virtual modeling. This concept will be a new paradigm opening the window for the next generation of the pest control, and the principle method will be adapted for insect specific pests. Another research interest here will be presented on exocrinal products, such as semiochemicals produced from insects and plants for chemical communication that regulates insect/insect and insect/host interactions. These studies have included the identification of pheromones and the biosynthetic pathway of their production from insects. The ultimate goal of this research is to discover novel biologically-based green pesticides that are environmental-friendly pest control alternatives.
        24.
        2008.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Road-map for the environmental friendly integrated pest management (IPM) of insect pests was drawn up on the strawberry vinyl-houses of farmer’s field. Major insect pests were occurred Tetranychus urticae and Aphis gossypii during the strawberry plant seeding in the vinyl house and open field. Also, same insect pests were occurred in the vinyl house during harvesting season of strawberry. For the control of T. urticae and A. gossypii, Phytoseiulus persimilis and Aphidius colemani as natural enemies were input to the vinyl house, respectively. However, because these natural enemies could not control insect pest populations, acaricide and insecticide were sprayed. Then natural enemies were input again in the vinyl house. Natural enemies could not endure the intense cold and differences of temperature and relative humidity between day and night during strawberry harvesting season. So, their behavior and control activity of pests were more decrease than pests. Firstly, natural enemies are input in the vinyl house during the early breeding season of strawberry, secondly, acaricides and insecticide are sprayed for the control of mites and aphids, respectively, during the middle breeding season in the hard winter. Finally, natural enemies are re-input in the vinyl house during the middle and late breeding season.
        4,600원
        30.
        1992.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the author gave a brief review on the meaning and background involving the growth of chemical ecology. Semichemicals which might be developed as insect control techniques incorporating in IPM program were described. The relevant semichemicals were grouped under separate topics including intraspecific semiochemicals, or pheromones (sex pheromones, alarm pheromones, and epidiectic pheromones), and interspecific semiochemicals, or allelochemics (allomones of Plant origin, and kairomones favoring natural enemies). Here, the author dealt with those of practical aspects only. The prospects of chemical ecology in insect pest management were also proposed.
        4,500원
        31.
        2010.06 KCI 등재 서비스 종료(열람 제한)
        During 2005~2009, current status on the occurrence and the management of the major disease, insect and mite pests were investigated in the non-chemical or organic cultured apple orchards in Korea. Numbers of certified organic or non-chemical apple orchards increased from 14 in 2005 to 78 in 2008. Severe damages on leaves and fruits were caused by the several diseases such as marssonina blotch, bitter rot, white rot, sooty blotch and flyspeck, and the several insect pests such as apple leaf-curling aphid, woolly apple aphid, oriental fruit moth and peach fruit moth on the almost certified organic or non-chemical pest control orchards. About 10 and 18 environmental-friendly materials were used to control diseases and insect or mite pests, respectively. But, lime sulfur and bordeaux mixture to diseases and machine oil, plant oil mixed with egg yolk, and pheromone mating disruptions to insect pests were effective under the adequate conditions.
        1 2