In reality, it is a green revolution of the entire agricultural matrix in Korea that integrated pest control plays an important role in the possible breakthrough in rice self-sufficiency. In paddy agroecosystem as man-modified environment, rice is newly established every year by transplantation under diverse water regimes which affect a microclimate. Standing water benefits rice by regulating the microclimate, but it favors the multiplication of certain pets through the amelioration of the microclimate. Further, the introduction of high yielding varieties with the changing of cultural practices results in changing occurrence pattern of certain pests. In general, japonica type varieties lack genes resistant to most of the important pests and insect-borne virus diseases, whereas indica type possesses more genes conferring varietal resistance. Thus, this differences among indica type, form the background of different approaches to pest management. The changes in rice cultivation such as double cropping, growing high-yielding varieties requiring heavy fertilization, earlier transplanting, intensvie-spacing transplanting, and intensive pesticide use as a consequence of the adoption of improves rice production technology, have intensified the pest problems rather than reduced them. The cultivation of resistant varieties are highly effective to the pest, their long term stability is threathened because of the development of new biotypes which can detroy these varieties. So far, three biotypes of N. lugens are reported in Korea. Since each resistant variety is expected to maintain several years the sequential release of another new variety with a different gene at intervals is practised as a gene rotation program. Another approach, breeding multilines that have more than two genes for resistance in a variety are successfully demonstrated. The average annual rice losses during the last 15 years of 1977-’91 are 9.3% due to insect pests without chemical control undertaken, wehreas there is a average 2.4% despite farmers’insecticide application at the same period. In other words, the average annual losses are prvented by 6.9% when chemical control is properly employed. However, the continuous use of a same group of insecticides is followed by the development of pest resistance. Resistant development of C. suppressalis, L. striatellus and N. cincticeps is observed to organophosphorous insecticides by the mid-1960s, and to carbamates by the early 1970s in various parts of the country. Thus, it is apparent that a scheduled chemical control for rice production systems becomes uneconomical and that a reduction in energy input without impairing the rice yield, is necessarily improved through the implementation of integrated pest management systems. Nationwide pest forecasting system conducted by the government organization is a unique network of investigation for purpose of making pest control timely in terms of economic thresholds. A wise plant protection is expected to establish pest management systems in appropriate integration of resistant varieties, biological agents, cultural practices and other measures in harmony with minimizing use of chemical applications as a last weapon relying on economic thresholds.
Since 1975, the studies on in vitro rearing Trichogramma spp., Anastatus japonicus Ashmead, Telenomus dendrolimusi Chu, Dibrachys cavus Walker, Habrobracon hebetor(Say), Bracon greeni Ashmead have been conducted successfully in China. The simulated “host-eggs" are made of polyethylene or polypropylene semispherical capsules, containing artificial diets, in which insectan pupal hemolymph is the main component. Manufacture of simulated “host larvae" are made of small rectangular parafilm of cotton-paper bags, containing artificial diets with insectan pupal hemolymph as the main component. Mass production of in vitro reared Trichogramma spp. and Anastatus japonicus and its utilization in the fields showed good effectiveness in controlling cotton bollworm, pine caterpillars, sugarcane borers and litchi stink bug.
A laboratory bioassay that incorporates Bacillus thuringiensis (Bt) purified crystal protein toxins into an artificial diet has identified three toxins, CryIA(b), CryIA(c), and CryIIA, to by effective against the yellow stemborer, Scirpophaga incertulas(Walker). Research is aimed at engineering rice that incorporates genes of one of or more of these toxins so as to mimic the insecticidal action of the insect to Bt. The paper discusses potential strategies for slowing the rate of adaptation that include the use of multiple Bt toxins, promoters that express the toxins only in specific plant tissues at specific times, and mixing transgenic and non-transgenic plants.
Insects are among the most important abiotic and biotic constraints to rice production. National rice research programs are in various stages in the development and implementation of integrated pest management (IPM) stratagies for rice insect control. Among the various control tactics, insect resistant cultivars are sought as the major tactic in rice IPM. Through the activities of interdisciplinary teams of scientists significant progress has been made in the development and release of insect resistant cultivars to farmers. Because of its compatibility with other control tactics insect resistance has proven to fit well into the IPM approach to rice insect control agents and minimize the need for insecticide applications. The development of biotypes which overcome the resistance in rice plants has been a significant constraint in the breeding of rice for resistance to insects. Most notable examples in Asia are the green leafhopper, Nephotettix virescens, brown planthopper, Nilaparvata lygens and the Asian rice gall midge, Orseolia oryzae. The current breeding stratege is to develop rice cultivars with durable resistance on which virulent biotypes cannot adapt. In spite of the significant progress made in the breeding of insect resistant cultivars there are still numerous important rice insect species for which host plant resistance as a control tactic has not been fully utilized. Advances in biotechnology provide promise of solving some of the problems that have limited the use of host plant resistance as a major tactic in the integrated management of rice insect pests.
In this paper, the author gave a brief review on the meaning and background involving the growth of chemical ecology. Semichemicals which might be developed as insect control techniques incorporating in IPM program were described. The relevant semichemicals were grouped under separate topics including intraspecific semiochemicals, or pheromones (sex pheromones, alarm pheromones, and epidiectic pheromones), and interspecific semiochemicals, or allelochemics (allomones of Plant origin, and kairomones favoring natural enemies). Here, the author dealt with those of practical aspects only. The prospects of chemical ecology in insect pest management were also proposed.
Investigation of the environmental impact of widespread pesticide use has revealed a virtue/vice relationship. Although many pesticides perform their function and disappear without harm to the environment, others persist beyond their useful purpose and cause direct of indirect hazard to man, domestic animals and wildlife. Concurrently, many pests have rapidly adjusted to chemical control practices through changes in behavior that avoid exposure to pesticides of throuth genetic selection for populations resistant to the toxicants. The prospect of losing control over insect herbivores and desease vectors and returning to the days of global hunger and disease is unthinkable. Fortunately, from basic studies of insect and plant biology many opportunities for the development of safe, selective and environmentally pacific strategies for insect pest management are being realized.
Insecticide resistance is a serious is a serious threat to IPM, resulting in various adverse effects not to mention the loss of yield in agriculture. One approach to counter the problem is the disruption of resistance mechanisms. This can be achieved by (1) compounds which show a negative correlation with resistance at the site of action, (2) specific metabolic inhibitors which serve as synergists, or (3) a certain combination of two insecticides producing a joint action. This approach, however, requires certain precautions for the side effects may cause an increase in toxicity to mammals. Owing to the recent advances in theoretical studies on resistance management employing computer simulation and mathematical models, a few principles to reduce the risk of development of resistance have been clarified. They are helpful in designing operational strategies with regard to, for instance, insecticide doses to be applied, mode of application, and choice and nature of the insecticide(s) to be used. For restoration of insecticide susceptibility of a resistant population, reintroduction of susceptible individuals to the resistant population is feasible when certain conditions are met. Natural enemies which developed resistance to insecticides can be an important component of IPM as has been shown in the pest management in apple orchards. After all, the implementation of a successful resistance management program depends upon cooperation between different sigments of the agricutural community. Although resistance is a preadaptive phenomenon, in some cases spontaneous loss of resistance does occur without contamination by susceptible individuals. The instability of resistance in these insects implies the possible existence of a switch machanism controlling the expression of resistance gene(s). Elucidation of such a mechanism may eventually provide us with a new technical approach with which we can combat the problem of insecticide resistance.