The objective of this study is to examine the effect of preload and different types of hybrid FRPs (Fiber reinforced polymers) to the structural behaviors of reinforced concrete (RC) beams retrofitted with hybrid FRPs under sustaining loads. For the experimental study, FRP retrofitted RC beams are fabricated and subjected to four point loading. The experimental results show that preload and the orders of attached FRP layers have influence on FRP strengthening effect. Also, for the preliminary FEA study, FE models are generated to simulate the experiments. The analytical results are compared with the experimental results and show good agreements.
Concrete filled FRP tubes (CFFT) and reinforced concrete filled FRP tubes (RCFFT) are known to have the capability to enhance structural performance in terms of structural stability, ductility, as well as chemical resistance when compared with conventional concrete members. In this study, we evaluate the structural performance of the CFFT and the RCFFT through flexural tests for the purpose of applying the members as flexural ones. The degree of improvement on the flexural performance of the RCFFT member strengthened by the FRP was analyzed from the flexural tests.
The fiber reinforced polymer (FRP) strengthening is significantly effective for enhancing the performances of concrete to the high strain rate loadings. However, the FRP retrofitted concrete members show different behaviors comparing to quasi-static cases. This study presents experimental observation on behaviors of meso-scale concrete members retrofitted with FRP sheets under low-velocity drop-weight impact loadings. Concrete specimens with the dimensions of 100×100×400 mm were fabricated and various FRP sheets were attached. The specimens with a reinforced bottom surface and the doubly reinforced specimens showed much higher energy absorptions. Also, reinforced concrete (RC) members were cast and reinforced with CFRP sheets. The FRP flexural and shear strengthening RC beams has weakness in the spalling failure because the impact load concentrated the concrete face which is not strengthened with FRP sheets.
이 논문에서는, CFT 감재-콘크리트 합성말뚝과 FRP를 원주방향으로 보강한 FRP-콘크리트 합성말뚝 (CFFT)과 관련 하여 발생하는 문제점들을 완하시키기 위해 새롭게 제안된 콘크리트 채움 원형 FRP 말뚝 (HCFFT)의 구조적 거동 에 대한 실험적 연구결과를 발표하였다. 연구를 통해 기존의 CFT와 CFFT 말뚝과 비교하여 새로 제안한 HCFFT 말 뚝이 말뚝 기초의 시공에서 축하중과 휨모멘트를 포함하는 상부하중을 지반에 효과적으로 전달할 수 있음을 알 수 있었다.
In construction industries, new construction materials are needed to overcome some problems associated with the use of conventional construction materials due to the change of environmental and social requirements. Accordingly, the requirements to be satisfied in the design of civil engineering structures are diversified. As a new construction material in the civil engineering industries, fiber reinforced polymeric plastic (FRP) has a superior corrosion resistance, high specific strength/stiffness, etc. Therefore, such properties can be used to mitigate the problems associated with the use of conventional construction materials. Nowadays, new types of bridge piers and marine piles are being studied for new construction. They are usually made of concrete filled fiber reinforced polymeric plastic tubes (CFFT). In this paper, a new type of FRP-concrete composite pile which is composed of reinforced concrete filled FRP tube (RCFFT) is proposed to improve compressive strength as well as flexural strength. The load carrying capacity of proposed RCFFT compression member is discussed based on the result of experimental and analytical investigations.
이 논문에서는 기존의 CFFT(Concrete Filled FRP Tube) 복합재 말뚝의 휨강성을 확보하기 위한 새로운 복합재 말뚝 형식을 제안하였다. 기존의 CFFT 복합재 말뚝은 필라멘트와인딩 공정으로 제작한 FRP를 사용하기 때문에, 압축력 이 편심재하될 경우 휨거동에 대한 안전성을 확보하기 위해 철근 등 별도의 보강재를 필요로 한다. 이 연구에서는 별도의 보강재 없이 휨거동에 대한 저항성을 확보하기 위하여 펄트루젼 방식으로 제작된 FRP를 CFFT 외부에 원주 방향으로 부착시킨 FRP-콘크리트 합성말뚝(Hybrid CFFT, HCFFT)을 제안하였다. 이 논문은 HCFFT의 구조적 거동 을 검토하기 위한 연구의 일부로서, HCFFT에 사용되는 필라멘트와인딩 FRP의 역학적 특성을 알기 위한 실험을 실 시하였다. 또한, 기존 연구 결과를 참조하여 HCFFT의 압축강도를 추정하였으며, 유한요소해석을 통해 얻은 결과와 비교분석하였다.
섬유복합재료(Fiber Reinforced Polymer, FRP)는 경량성, 높은 설계기준강도, 비전기 비자성 및 내부식성의 특징 등으로 인하여 최근 건설분야에서 많은 연구가 진행되고 있다. 그 중 GFRP(Glass Fiber Reinforced Polymer)는 가격 경쟁성에서 우수하여 일반적으로 많이 사용되고 있다. 그러나 GFRP는 상대적으로 낮은 탄성계수를 가지고 있어 처짐이 과대하게 발생함으로 구조부재 단면으로서 활용되기 위해서는 단면이 커야하며, 설계시 사용하중에 의한 처짐 제한에 대한 검토를 실시해야 한다. 이에 본 연구에서는 언급된 기술적인 문제점을 해결하기 위하여 대형 단면의 적용이 가능하도록 모듈형식의 단면을 제안하였다. 그리고 FRP의 낮은 강성을 확보하군 위하여 콘크리트를 충진하는 새로운 FRP+콘크리트 합성 거더 형상을 개발하였다. 개발된 FRP)콘크리트 합성 거더의 전단지간비와 콘크리트 충진 여부에 따른 전단강도 및 처짐, 중립축 변화를 확인하고자 전단실험을 실시하였다.
본 연구에서는, 기존 철근 콘크리트 구조물에 적용된 직접 변위-기반 설계법을 적용 FRP 피복 보강된 성능개선 콘크리트 부재에 대한 정밀 비선형 휨 해석 및 내진성능설계의 구체적 알고리즘을 제시하였다. 비선형 휨 해석의 정밀 예측을 위하여 콘크리트 및 FRP 복합재료의 다축 구성관계를 고려하였으며, Chopra 등 (1999)이 제안한 직접 변위-기반 설계법(DDM)을 개선하여 철근콘크리트 기둥에 대한 성능개선을 위한 FRP 피복 보강을 위한 성능설계 알고리즘을 제시하였다. 제시된 직접 변위-기반 설계법은, 변위계수법과 비교하여, 비선형 거동이 큰 경우에도 목표 변위 성능 값에 대한 정확한 추정을 해준다. 이는 변위계수법이 항복 이전의 유효탄성계수를 사용하는 반면, 직접 변위-기반 설계법은 유효탄할선탄성계수를 고려하고 있어, 목표 변위에 따른 성능설계 평가에 있어서 보다 높은 연성비의 거동을 반영하고 있기 때문인 것으로 평가된다.
The purpose of this study is to investigate the freeze - thaw behavior of FRP reinforced concrete structures. Under the same conditions, two FRP reinforced beam specimens were made, and one speciemen was subjected to freezing and thawing. Then a four-point bending experiment was conducted. As a result, it was analyzed that the load values of reinforced specimens after freezing and thawing appear less at the same displacement in displacement-load behavior.
In this study, an experiment was conducted to evaluate the behavior of fiber reinforced concrete beam according to GFRP(Glass Fiber Reinforced Polymer)sheets and based on previous specimens and directly compare the fiber reinforcing effect. As a result, all specimens, regardless of the cross section shape, had an increase in torsional capacity and similar behavior compared to previous study.
본 연구의 목적은 해석적 방법을 통하여 내화 재료의 특성을 파악하고 섬유 강화 폴리머로 보강된 철근콘크리트의 보의 적절한 내화설계 방법을 제안하는 것이다. 이를 위해, 내화재료의 가열실험을 실시하고 유한요소해석을 통해 열전도율과 비열을 구하고 또한 고온에서 FRP로 보강된 철근콘크리트 보 실험체에 대한 유한요소 해석을 통해 실험결과와 해석결과를 비교하였다. 이 과정에서 실험과 해석적 접근의 신뢰성을 확인하였다. 최종적으로 FRP로 보강된 철근콘크리트 보의 열적특성을 제안된 해석 방법으로 분석하고 고온으로 감소된 휨내력을 계산하였다. 최종적으로 제안된 방법을 이용하여 FRP로 보강된 부재에서 고온 노출시 열특성을 반영한 부재의 열전도를 파악하고 이를 이용하여 내력을 산정할 수 있는 것으로 나타났다.
본 연구는 순환골재를 사용한 콘크리트의 활용증대 방안으로 철근콘크리트 구조물의 노후화와 내구성 저하 시 보수․보강으로 사용되는 FRP (AFRP, CFRP) 판으로 보강된 순환골재 고강도콘크리트(40MPa, 60MPa) 보를 제작하여 순환골재 철근콘크리트 보의 휨 보강에 대한 적용성을 평가하고자 한다 기존의 표면매입보강에 따른 에폭시와 FRP 판의 부착력을 고려하지 않기 위해 콘크리트 타설 전 FRP 보강판을 거푸집에 미리 설치하였으며, 순환골재 치환율(30%), 콘크리트 강도(40MPa, 60MPa), 이형철근(D10, D13), FRP 판의 종류(AFRP 판, CFRP 판)를 변수로 12개 실험체를 제작하여, FRP 판과 순환골재 치환율에 따른 휨 성능을 분석하였다. 그 결과 FRP 판으로 보강한 실험체는 무보강 실험체에 비해 최대 17% 증가하는 경향을 나타내었으며 AFRP 판에 비해 CFRP 판의 보강 성능이 우수한 것으로 나타났다. 또한 순환골재 치환율에 따른 보강 성능의 차이는 없는 것으로 나타났다. 실험에 의해 측정된 균열모멘트는 파괴계수를 이용한 결과 기준식과 비슷한 값을 나타났으며 휨 모멘트는 FRP 판을 보강한 일부 시험체가 KCI 2012와 ACI 440-2R에서 제시한 기준을 만족하지 못하는 것으로 나타났다.
According to social needs, eco-friendly material for concrete structures has been developed in recent years. Hwang-toh is one of the eco-friendly architectural material and hwang-toh has been used by partial or complete replacement of portland cement. Four beam specimens with the variations of types of FRP bar (GFRP or CFRP bar) and cement are prepared and tested. From development test, the performance of FRP rebar for PVA fiber reinforced AHC was evaluated.
This study examined the safety and reliability of code equations for the bond strength of FRP bars with concrete using test data compiled from the different sources. ACI equations have a better agreement with test results, whereas high overestimation is observed in JSCE equations.
Concrete structure is a construction material with durability and cost-benefit, however the corrosion in embedded steel causes a critical problem in structural safety. This paper presents an evaluation of chloride resistance and pull-off performance with various corrosion level. For the work, OPC(Ordinary Portland Cement) concrete and GGBFS(Ground Granulated Blast Furnace Slag) concrete are prepared with normal steel. Artificially notch induced FRP Hybrid Bar is also prepared and embedded in OPC concrete and accelerated corrosion test is performed. Through the test, FRP Hybrid Bar with notch is evaluated to have insignificant effect on pull-off capacity when corroded steel shows only 21% level of pull-off capacity. Furthermore GGBFS concrete with normal steel shows over 70% level of pull-off capacity due to reduced corrosion currency.
본 연구에서는 콘크리트에 표면매입된 FRP판의 부착거동에서, 전단키와 연단거리의 효과를 관찰하기 위한 부착시험을 실시하였 다. 실험에서의 주요변수는 전단키의 위치, 형태 그리고 연단길이이다. 규격 3.6 ㎜×16 ㎜의 FRP를 400 ㎜×200(300) ㎜×400 ㎜ 규격의 콘크리 트 블록에 매입하고 에폭시로 고정시켜서 실험변수에 따라 총 10개의 부착실험체를 제작하였다. FRP의 연단에 인장력을 가한 뒤 파괴시까지 실험을 실시하고 하중을 기록하였으며, 미끄러짐과 FRP의 인장변형량을 기록하였다. 실험으로부터, 전단키의 위치는 가력부에서 멀리 떨어 질수록 전단강도가 상승하는 것으로 나타났으며, 전단키의 직경이 커질수록 내력이 저하되는 것으로 나타났다. 특히 전단키가 일정 이상의 규 격이 되면 전단키가 없는 경우에 비하여 내력이 저하되어 오히려 부착강도에 부정적인 영향을 미칠 수 있는 것으로 나타났다. NSM FRP에서 응력장용방향의 연단거리가 길어짐에 따라 동일 부착길이임에도 불구하고 내력이 일부 증가하는 것으로 나타났다. 표면매입 보강된 FRP의 부착실험에서, FRP와 콘크리트사이의 부착-미끄러짐은 전체거동을 지배하는 것으로 나타나므로 이에 따른 과도한 미끄러짐은 설계에 반드시 고려될 필요가 있다.
최근 들어 FRP 판을 영구 거푸집 및 주요 인장보강재로 활용하기 위한 새로운 콘크리트 교량 바닥판 시스템 개발에 대한 연구가 활발히 진행되고 있다. 영구거푸집과 인장 보강재로의 병행이용은 기존의 콘크리트 바닥판 보다 공사비와 공사기간을 절감 할 수 있다. 본연구에서 는 영구거푸집 및 주요인장재로 활용한 FRP 판의 종류에 따른 현장타설 콘크리트와 부착응력에 대해 실험을 수행하였다. 부착성능 평가를 실시하였고, 부착특성을 나타내는 중요한 변수중에 하나로서 부착 강도 및 부착면의 파괴 매커니즘 특성을 알 수 있는 계면 파괴에너지를 나타내었다. 일반콘크리트에서 계면 파괴에너지는 GF11의 경우 0.24kN/m이고, GF21의 경우에는 0.43kN/m, GF31과 CF11의 경우에는 각각 0.46kN/m와 0.44kN/m로 나타났고, RFCON에서는 GF12의 경우 0.52kN/m, GF22와 CF12에서는 각각 0.36kN/m와 0.51kN/m로 나타났다.