검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 53

        43.
        2011.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        프로펠러와 프로펠러축이 슬립(Slip)되는 사고가 발생하면 추진력 상실로 인한 안전과 경제적면에서 막대한 문제가 할 수 있다. 본 연구에서는 대형선박에서 슬립사고(Slip damage) 발생 원인을 사고 선박 승선원 면담, 신조선의 도면검토, 보험사 조사관 사고 보고서 등을 통해 조사하였다. 추가로 프로펠러의 재질에 대한 충격강도를 확인하기 위하여 압축시험을 실시하였다. 본 연구 결과는 키가 없는(Keyless type) 프로펠러의 접촉강도 설계 기준에 적용 할 수 있고, 나아가 프로펠러보스와 축이 슬립하는 사고를 방지하는데 유용한 자료를 제공 할 것으로 판단된다.
        3,000원
        45.
        2010.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fishing efficiency of a trawl vessel can be enhanced by increasing the swept area per unit time, which can be attained either by increasing the mouth size of the net, or by increasing the towing speed. To improve fishing and fuel efficiency of trawl vessels targeting fishes of greater mobility, in which the towing speed is more critical in determining fishing efficiency, we conducted a series of model tests to evaluate the performance of the newly-designed nozzle propeller before installing it in a trawl vessel to verify its towing speed and fuel efficiency in the sea. By conducting further model tests in the experimental basin, we redesigned the propeller of stern trawler to improve the resistance and propulsion performance. Through actual fishing operations, we evaluated the improvement in fuel and fishing efficiency by installing the new nozzle propeller. The trawling speed increased by 0.6kts at the same engine power (RPM), while the engine margin increased by more than 20%. The increased towing speed by installing the redesigned propeller is expected to enhance fishing performance through increasing the number of hauling- and casting operations per unit times, while shortening the towing duration. Analysis of the Catch-Per-Unit-Effort (CPUE) data indicated that the mean CPUE of trawl fishery increased from 3.04kg/m in year 2007 to 6.15kg/m in year 2008, confirming enhanced fishing efficiency by adopting the redesigned propeller.
        4,200원
        46.
        2009.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In every aspect of automotive production, quality, productivity and cost are crucial matters. The purpose of this research is to improve the productivity of slip yoke for automotive propeller shaft. This paper presents how to redesign the component that c
        4,000원
        47.
        2008.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Trawlers have to a sufficient towing force due to it's characteristics of the high performance. The newly constructed trawler with the conventional propellers shows the sufficient towing force, so that the propeller and engine are optimized. In the 1970s, many trawlers were imported from overseas by Korean fisheries industries. But the engine output degradation with year by year caused the trawlers to decrease the towing speed of the vessels. On the previous studies, the nozzle propeller had not so good efficiency with increasing of resistance in high-speed cruising operation over 15knots. But the trawling operation is just required the higher thrust and towing force, so that the nozzle propeller is very profitable for the it's effectiveness. A new nozzle propeller was designed for the 4,462G/T trawler, Dong-San, operated by Dongwon Industries Co., Ltd. to improve the towing speed, and the model tests were performed. The model ship and model propeller are preciously manufactured and used model tests in basin. The resistance test and propeller open water test were performed for the cases of the half and full loads. The required engine horse power and RPM were evaluated analytically by the speed-power curve, when the trawler was equipped with the nozzle propeller. The results of tests showed that the towing speed 4.85knots on the design load waterline requires the 200 engine RPM and 2,567ps in the delivered horsepower.
        4,200원
        48.
        2007.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper represents a basic statistical examination on the navigability of ocean-going ship from the point of estimating the time lasting period when propeller racing occurred by using the basic probability theory and the statistics. The propeller racing is one of the most important seakeeping qualities in relation to the safety of the main engine and shafting system. The trend of the racing has been mainly investigated in order to estimate allowable maximum propeller diameter, operation of ocean-going ships, etc.. In those studies, the propeller racing generally and mainly means the situation (propeller exposed) in which the relative motion amplitude between ship hull and wave surface would exceed a depth of point in rotary disk propeller. Therefore, it seems that the magnitude of the amplitude and its exceeding frequency of propeller racing have been examined as a principal subject of study as usual. However, the time during which the amplitude exceeds the depth of point, that is, the propeller exposes in the air, must be also one of most important factor affecting the trend of propeller racing. Then, this paper proposes a new practical method for estimating the time lasting of exposed propeller related to propeller racing in rough-confused seas on the basis of the linear strip theory and the statistics. And, numerical examples of estimating the propeller racing probability are given for four wide ship forms. Finally the usefulness of the proposed method for predicting propeller racing based on the time lasting period is discussed.
        4,000원
        50.
        2004.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 펌프 노즐이 부착된 잠수 선형의 유동에 관해 수치해석 결과를 보여준다. 이는 속도분포, 양력계수, 영각의 값을 갖는 펌프젯 노즐이 선체와 부착되었을 때와 부착되지 않았을 때의 종강도 모멘트 등의 값들을 계산한다. 선형의 속도 분포에 따른 노즐의 영향면적과 양력계수(변호의 특성요인) 종강도 모멘트, 영각에 따른 도함수 등을 보여준다.
        4,000원
        52.
        2002 서비스 종료(열람 제한)
        The flow zone through jets are used in evaluating the environmental and constructional effects of navigation on the Kwangyang navigation channel. It is relies on the characteristics of ships and water depth. A numerical model using the momentum theory of the propeller and Shield's diagram was developed in a restricted waterway. Equations for discharge are presented based on thrust coefficients and propeller speed and are the most accurate means of defining discharge. Approximate methods for discharge are developea based on applied ship's power. Equations for discharge are as a function of applied power, propeller diameter, and ship speed. Water depth of the waterway and draft of the ship are also necessary for the calculation of the grain size of the initial motion. The velocity distribution of discharge from the propeller was simulated by the Gaussian normal distribution function. The shear velocity and shear stress were from the Sternberg's formula. Case studies to show the influence of significant factors on sediment movement induced by the ship's propeller at the channel bottom are presented.
        53.
        1990.09 KCI 등재 서비스 종료(열람 제한)
        In recent years, propellers with various blade configurations such as highly skewed propellers are often fitted to ships from the viewpoint of reduction of vibration and noise. In the design of such propellers, design charts based on methodical series tests are to be complemented by theoretical calculations for accurate estimation of propeller open-water characteristics. The author intended to develop a method to estimate propeller open-water characteristics based on Quasi -Vortex - Lattice Method originally developed by Lan for solving planar thin wings, The Quasi - Vortex - Lattice Method has the simplicity and flexibility of Vortex - Lattice Method. Its accuracy is comparable to that of the Vortex - Lattice Method. Converged solution can be obtained with a small number of control points and further, leading edge suction force can be calculated directly. In the present paper, a numerical method to estimate propeller open-water characteristics based on the Quasi - Vortex - Lattice Method is reviewed and its application to marine propellers is described in detail. Comparison of propeller open-water characteristics obtained by the present method with experimental data showed good agreement for a wide variety of propellers including highly skewed propellers.
        1 2 3