검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 811

        47.
        2023.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This research examines the effect of adding aluminum on the structural, phasic, and magnetic properties of CoCrFe NiMnAlx high-entropy alloys. To this aim, the arc-melt process was used under an argon atmosphere for preparing cast samples. The phasic, structural, and magnetic properties of the samples were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrational magnetometry (VSM) analyses. Based on the results, the addition of aluminum to the compound caused changes in the crystalline structure, from FCC solid solution in the CoCrFeNiMn sample to CoCrFeNiMnAl BBC solid solution. It was associated with changes in the magnetic property of CoCrFeNiMnAlx high-entropy alloys, from paramagnetic to ferromagnetic. The maximum saturation magnetization for the CoCrFeNiMnAl casting sample was estimated to be around 79 emu/g. Despite the phase stability of the FCC solid solution with temperature, the solid solution phase formed in the CrCrFeNiMnAl high-entropy compound was not stable, and changed into FCC solid solution with temperature elevation, causing a reduction in saturation magnetization to about 7 emu/g.
        4,000원
        48.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        확산강조 자기공명영상은 초급성기 뇌경색 진단과 뇌종양 진단 및 치료에 매우 유용하지만 뇌줄기 주변에 자화 감수성 인공물이 자주 발생하고 있어 이를 최소화하려는 노력이 필요하다. 확산강조영상은 에코평면영상(echo planar image)을 사용하고 서로 다른 자화 감수성을 가진 구조물들이 인접한 경계면에서 영상의 왜곡을 나타낸다. SENSE(sensitivity encoding) 기법은 자화 감수성 인공물을 감소시킬 수 있다. 본 연구는 뇌 줄기의 해부구조를 모방한 팬텀을 만들어서 확산 강조영상 시 자화 감수성 인공물을 감소시키는 최적의 SENSE 인자(factor)를 알아보았다. 산출된 최적의 SENSE 인자와 현재 임상 값으로 만든 영상을 비교 분석하고, 통계적 유의성을 검증하여 유용성을 알아보았다. 팬텀 실험 결과 SENSE 인자의 크기가 증가할수록 자화 감수성 인공물은 감소하였다. SENSE 인자 2.5, 3.0, 3.5, 4.0을 적용한 영상은 기준 영상 과 같은 크기의 왜곡이 발생하였다. 산출된 SENSE 인자 2.5의 실험군과 1.5을 적용한 대조군 각각 40명의 영상을 비교 분석하였다. SENSE 인자 1.5를 적용한 대조군은 SENSE 인자 2.5를 적용한 실험군에 비해서 자화 감수성 인공물이 더 크게 발생하였고, 통계적으로 유의하게 나타났다. 본 연구를 통해서 뇌 확산강조영상 획득 시 SENSE 인자 2.5를 적용한다 면 진단적으로 더욱 가치가 있는 영상을 얻을 수 있을 것으로 사료된다.
        5,200원
        49.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This work describes the synthesis and characterization of a heterogeneous catalyst consisting of piperazine-functionalized reduced graphene oxide decorated with Fe3O4 nanoparticles ( Fe3O4@rGO-NH), and the study of its catalytic activity as a magnetic heterogeneous catalyst for the Pechmann synthesis of coumarins. Catalyst Fe3O4@ rGO-NH was fully characterized by various techniques, including IR, XRD, TEM, VSM, TGA, and elemental analysis. Then, the catalyst was used as an efficient and easy-separable heterogeneous catalyst for the solvent-free synthesis of some coumarins by Pechmann reaction. The reaction was optimized in terms of reaction time and temperature, catalyst dosage, and the presence/absence of the solvent. Finally, the reusability of the catalyst was studied.
        4,000원
        50.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Soft magnetic powder materials are used throughout industries such as motors and power converters. When manufacturing Fe-based soft magnetic composites, the size and shape of the soft magnetic powder and the microstructure in the powder are closely related to the magnetic properties. In this study, Fe-Si-Al-P alloy powders were manufactured using various manufacturing process parameter sets, and the process parameters of the vacuum induction melt gas atomization process were set as melt temperature, atomization gas pressure, and gas flow rate. Process variable data that records are converted into 6 types of data for each powder recovery section. Process variable data that recorded minute changes were converted into 6 types of data and used as input variables. As output variables, a total of 6 types were designated by measuring the particle size, flowability, apparent density, and sphericity of the manufactured powders according to the process variable conditions. The sensitivity of the input and output variables was analyzed through the Pearson correlation coefficient, and a total of 6 powder characteristics were analyzed by artificial neural network model. The prediction results were compared with the results through linear regression analysis and response surface methodology, respectively.
        4,000원
        51.
        2022.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To seek an atmospheric heating mechanism operating on the Sun we investigated a heating source generated by a downflow, both of which may arise in a magnetic loop dynamically formed on the Sun via flux emergence. Since an observation shows that the illumination of evolving magnetic loops under the dynamic formation occurs sporadically and intermittently, we performed a magnetohydrodynamic simulation of flux emergence to obtain a high-cadence simulated data, where temperature enhancement was identified at the footpoint of an evolving magnetic loop. Unlike a rigid magnetic loop with a confined flow in it, the evolving loop in a low plasma β atmosphere is subjected to local compression by the magnetic field surrounding the loop, which drives a strong supersonic downflow generating an effective footpoint heating source in it. This may introduce an energy conversion system to the magnetized atmosphere of the Sun, in which the free magnetic energy causing the compression via Lorentz force is converted to the flow energy, and eventually reduced to the thermal energy. Dynamic and thermodynamic states involved in the system are explained.
        4,000원
        52.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Social interactions often involve encountering inconsistent information about social others. We conducted a functional magnetic resonance imaging (fMRI) study to comprehensively investigate voxel-wise temporal dynamics showing how impressions are anchored and/or adjusted in response to inconsistent social information. The participants performed a social impression task inside an fMRI scanner in which they were shown a male face, together with a series of four adjectives that described the depicted person's personality traits, successively presented beneath the image of the face. Participants were asked to rate their impressions of the person at the end of each trial on a scale of 1 to 8 (where 1 is most negative and 8 is most positive). We established two hypothetical models that represented two temporal patterns of voxel activity: Model 1 featured decreasing patterns of activity towards the end of each trial, anchoring impressions to initially presented information, and Model 2 showed increasing patterns of activity toward the end of each trial, where impressions were being adjusted using new and inconsistent information. Our data-driven model fitting analyses showed that the temporal activity patterns of voxels within the ventral anterior cingulate cortex, medial orbitofrontal cortex, posterior cingulate cortex, amygdala, and fusiform gyrus fit Model 1 (i.e., they were more involved in anchoring first impressions) better than they did Model 2 (i.e., showing impression adjustment). Conversely, voxel-wise neural activity within dorsal ACC and lateral OFC fit Model 2 better than it did Model 1, as it was more likely to be involved in processing new, inconsistent information and adjusting impressions in response. Our novel approach to model fitting analysis replicated previous impression-related neuroscientific findings, furthering the understanding of neural and temporal dynamics of impression processing, particularly with reference to functionally segmenting each region of interest based on relative involvement in impression anchoring as opposed to adjustment.
        5,200원
        53.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        MRI는 인체에 수소 밀도에 따른 재현성의 차이가 상대적으로 기존의 영상 장비들에 비교하여 큰 차이가 있으므로 임상 에서 이를 증명하고 문제 발견 시 이를 보완하는 것이 딥러닝 알고리즘은 매우 중요하다. 따라서 본 연구에서는 현재 특수 의료장비에서 권하는 미국 방사선 의학회(American College of Radiology, ACR)의 두부 전용 MRI 팬텀을 사용하여 영상 품질기준에 현재 임상 적용되고 있는 딥러닝 알고리즘 방법을 적용하여 딥러닝 알고리즘 적용 전후 변화를 평가해 보고자 하였다. 연구 결과 분해능을 측정하는 항목인 고대조도 공간 분해능과 같이 해상도와 관련된 영상 품질은 분해능은 개선되었음을 알 수 있었고, 그뿐만 아니라 위치의 정확도 역시도 기존에 딥러닝 알고리즘의 적용 전 영상과 통계적으로 차이가 있었다. 또한 딥러닝 알고리즘의 강도 차이에도 영상 간 차이는 없었다. 이러한 결과는 특수의료장비 영상품질관리 규정에 적용되고 있는 ACR 팬텀의 평가 기준에 부합 하나, 딥러닝 알고리즘 적용 전후 차이가 통계적으로 있었으며, 이러 한 차이가 재현성과 관련하여 추후에 조금 더 관련된 연구기 필요할 것으로 사료된다.
        4,000원
        55.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Thermal management is significant to maintain the reliability and durability of electronic devices. Heat can be dissipated using thermal interface materials (TIMs) comprised of thermally conductive polymers and fillers. Furthermore, it is important to enhance the thermal conductivity of TIMs through the formation of a heat transfer pathway. This paper reports a polymer composite containing vertically aligned electrochemically exfoliated graphite (EEG). We modify the EEG via edge selective oxidation to decorate the surface with iron oxides and enhance the dispersibility of EEG in polymer resin. During the heat treatment and curing process, a magnetic field is applied to the polymer composites to align the iron oxide decorated EEG. The resulting polymer composite containing 25 wt% of filler has a remarkable thermal conductivity of 1.10 W m− 1 K− 1 after magnetic orientation. These results demonstrate that TIM can be designed with a small amount of filler by magnetic alignment to form an efficient heat transfer pathway.
        4,000원
        56.
        2022.10 구독 인증기관·개인회원 무료
        The magnetic Cs adsorbent functionalized with hierarchical titanium-ferrocyanide were fabricated for the highly efficient magnetic removal of radioactive cesium from water. The new magnetic Cs adsorbent has a core–shell structure that comprises a Fe3O4 core, an interlayer of SiO2, and a titanium-ferrocyanide-shell with hierarchical nanostructure. At first, the magnetic Fe3O4 nanoparticles synthesized via a hydrothermal reaction were coated with SiO2. Then, TiO2 were coated on the surface of SiO2 coated magnetic nanoparticles. Finally, the hierarchical titanium-ferrocyanide composed of 2-dimensional TiFC flakes was fabricated on the surface of core-shell MNP@SiO2@TiO2 microparticles using a TiO2 sacrificial template via a simple reaction with potassium ferrocyanide (FC) based on the Kirkendall-type diffusion. The resulting magnetic Cs adsorbent shows higher adsorption capacity of 416 mg/g than other magnetic Cs adsorbents (below 200 mg/g) because of the increased effective surface area of hierarchical titanium-ferrocyanide. Therefore, our Magnetic Cs adsorbent functionalized with hierarchical titanium-ferrocyanide has excellent potential for the treatment of various 137Cs-contaminated sources.
        1 2 3 4 5