검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 73

        70.
        2000.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For decompose carbon dioxide, manganese oxide was synthesized with 0.25M-MnSO4·nH2O and 0.5M-NaOH by coprecipitation. We made magnetite deoxidized manganese oxide by hydrogen reduction for 1hour at 330℃. We investigated characteristics of catalyst, hydrogen reduction degree and decomposition rate of carbon dioxide. The structure of the hausmannite certified spinel type. The specific surface area of synthesized hausmannite and deoxidized hausmannite were 22.36m2/g, 33.56m2/g respectively. The decomposition rate of CO2 of deoxidized hausmannite was 57%.
        4,000원
        71.
        2000.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The selective catalytic reduction(SCR) of nitric oxide by ethane in the presence of oxygen was investigated on Cu-ZSM-5, Co-ZSM-5 and Ga-ZSM-5 catalysts over a range of 400, 450 and 500℃. The catalysts were prepared by ion-exchange method. The composition of the reactant gases were 1000 ppm of NO, 1000 ppm of C2H6 and 2.5% of O2, and the reaction was conducted in a fixed-bed reactor at 1 atm. For the 20wt% Co-ZSM-5(50) catalyst, the NO conversion reached up to 100%, while the C2H6 conversion and the CO selectivity were about 50% and 25%, respectively, at 450℃. For the 20wt% Cu-ZSM-5(50) catalyst, the NO conversion and the C2H6 conversion were about 80% and 100%, respectively, but there was no CO produced. The metal ion-exchanged ZSM-5 catalysts exhibited a tendency to increase the NO conversion with the Si/Al ratio of the ZSM-5, that is, NO conversion was inversely proportional to the acidity of the catalysts. But, the effect of the acidity on NO conversion was not so large. From the XRD results of the catalysts before and after SCR reaction it was found that there was no structural change.
        4,000원
        72.
        1997.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The synthesis of W-l5wt%Cu nanocomposite powder by hydrogen reduction of ball milled W-Cu oxide mixture was investigated in terms of powder characteristics such as particle size, mixing homogeneity and micropore structure. It is found that the micropores in the ball milled oxide (2-50 nm in size) act as an effective removal path of water vapor, followed by the formation of dry atmosphere at reaction zone. Such thermodynamic condition enhances the nucleation of W phase but suppresses the growth process, being in favor of the formation of W nanoparticles (about 21 nm in size). In addition, the superior mixing homogeneity of starting oxide mixture turned out to Play a significant role for forming extraordinary chemical homogeneity of W-l5wt%Cu nanocomposite powder.
        4,000원
        73.
        1993.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Ar/Ar-H2 플라즈마법으로 고순도 Nb금속을 환원 정련하였다. 또한, Ar-(20%)H2플라즈마에서의 용융Nb금속과 수소간의 반응을 해석하였다. Ar플라즈마 환원에서는 C/Nb2O5=5.00의 비에서 99.5wt%의 금속 Nb을 얻었으며, 니오븀 산화물의 열분해에 의한 O/Sub 2/의 손실은 발생하지 않았다. Ar-(20%)H2 플라즈마에서는 C/Nb2O5=4.80의 비에서 99.8wt%의 금속 Nb을 제조하였다. 주된 탈산반응은 H, H2와의 반응이었으며,NbOx의 증발에 의한 탈산은 발생하지 않았으나, "splash"효과에 의해 Nb의 질량손실이 발생함을 관찰하였다. 탈산반응은 1차 반응속도론에 따랐으며, 탈산의 반응속도 상수(k')는 7.8 × 10-7(m/sec)였다. Ar-(20%)H2 플라즈마법에서 Nb금속 내의 수소 용해도는 60ppm으로 분자상태 수소의 용해도인 40ppm 보다 높았으며, 포화되는 시간은 60초 이내였다. 이를 다시 Ar 플라즈마로 처리함으로써 수소 함량을 10ppm 이하로 감소시킬 수 있었다.소시킬 수 있었다.
        4,000원
        1 2 3 4