검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 758

        61.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To mitigate the environmental impacts of the energy sector, the government of South Korea has made a continuous effort to facilitate the development and commercialization of renewable energy. As a result, the efficiency of renewable energy plants is not a consideration in the potential site selection process. To contribute to the overall sustainability of this increasingly important sector, this study utilizes the Black-Scholes model to evaluate the economic value of potential sites for off-site wind farms, while analyzing the environmental mitigation of these potential sites in terms of carbon emission reduction. In order to incorporate the importance of flexibility and uncertainty factors in the evaluation process, this study has developed a site evaluation model focused on system dynamics and real option approaches that compares the expected revenue and expected cost during the life cycle of off-site wind farm sites. Using sensitivity analysis, this study further investigates two uncertainty factors (namely, investment cost and wind energy production) on the economic value and carbon emission reduction of potential wind farm locations.
        4,000원
        73.
        2022.10 구독 인증기관·개인회원 무료
        From Fukushima nuclear disaster, as the water which is supplied by rain and groundwater flow into reactor building, contaminated water which contains radioactive nuclides is occurred. Although about 600 tons of contaminated water was generated at the early of accident, as the groundwater management system is developing, about 150 tons of contaminated water is generated now. Tokyo Electric Power Holdings (TEPCO) operate a multi-nuclide removal equipment which is called ‘ALPS’ and store purified water (ALPS treated water) in the Fukushima NPP site by tank. From 2023, the Japanese government decided to dilute the stored ALPS treated water and discharge it into the ocean to secure space on the site. In this study, based on the data opened to the public by TEPCO, the current status of ALPS is investigated. The dilution and discharge process under conceptual design was investigated. In addition, the treatment capacity of ALPS was analyzed based on the radioactivity concentration data of 7 nuclides. And then, two points to be checked found. First, it was confirmed that the performance of ALPS temporarily decreased between 2015 and 2018 due to reduced replacement cycle of filter and absorbent. Second, it was confirmed that the ALPS treated water from specific ALPS still haven’t satisfied the discharge limit for I-129, Sr-90, and Cs-137. In the case of Cs-137, about 1.7 times the radioactivity concentration was detected compared to the discharge limit. For I-129 and Sr-90, about 2.4 times and 2.1 times of radioactivity concentration was detected compared to the discharge limit. From this study, some of the ALPS treated water are confirmed that the radioactivity concentration exceeds the discharge limit, and the treatment capacity of ALPS might be unstable depend on the ALPS operation such as replacement cycle. Therefore, before the discharging of contaminated water on 2023, it is necessary to inspect ALPS if it purifies contaminated water with reliability or not, and to secure the reliable evaluation method to measure radioactivity concentration.
        74.
        2022.10 구독 인증기관·개인회원 무료
        In 2022, new regulatory guidelines were announced in relation to the off-site dose calculation (ODC), and accordingly, measures to improve the off-site does calculation program (ODCP), kdose60, were reviewed. The main consideration is, first, that if multiple nuclear facilities are operated on the same site, the boundaries of the restricted areas shall be set as the overlapping outer boundaries of the restricted areas determined by calculation for each nuclear facility. Second, the external exposure caused by direct radiation from a number of nuclear facilities in the same site must be partially or fully applied depending on the facility and site characteristics. Third, the dose conversion coefficient should be evaluated by checking whether the effect of the daughter nuclides is properly reflected. Fourth, the soil contamination period is a factor to consider that radioactive substances deposited on the surface, such as particulate nuclides, affect residents over a long period of time. Fifth, due to the recent construction of Shin-Kori Units 5 and 6, there is a change in the site boundary of the Kori/Saeul site, so as the site boundary is expanded, it is required to add an exposure dose assessment point due to gas effluents and change the exposure dose assessment point according to crop intake. Therefore, through this study, the direction for improving the ODCP will be prepared by reviewing the recent revision of the regulatory guidelines.
        75.
        2022.10 구독 인증기관·개인회원 무료
        To efficiently manage the waste packages like drums, it is meaningful to utilize the data of placement and emplacement of disposed waste in geological storage. For the transparent and real-time management of disposal data, both technical as well as administrative factors must be included. To this end, MIRAE-EN Co., Ltd. has developed a radioactive waste tracking and management system (m-trekⓇ v1.0) through radioactive waste management life cycle which is supported by KETEP. Enhancing the functional features of m-trekⓇ, IoT-based drum location measuring and data of those drums, such as position, radionuclides, activity, and dose etc., are to be collected and monitored through data modeling and visualization, which might be utilized in emplacing the loaded drums according to specifically certain criteria of internal and external data of disposal site. Position measuring using Beacon utilizes Received Signal Strength Indicator (RSSI) to locate the correct position in 3D area. Since RSSI is affected by the surrounding environment, it is required to corrective optimization. In addition, error and deviation of previously applied Gaussian filter method, was corrected and improved through AI learning model. According to this location information and those data, the prototype in future provides the visualization of drum position and its relevant data for administrative purpose such as monitoring, emplacement and other management policy.
        76.
        2022.10 구독 인증기관·개인회원 무료
        Organic complexing agents may affect the mobility of radionuclides at low- and intermediate-level radioactive waste repositories. Especially, isosaccharinic acid (ISA) is the main cellulose degradation product under high pH conditions in cement pore water. ISA can combine with radionuclides and form stable complexes that adversely influence adsorption in the concrete phase, resulting in radionuclides to leach to the near- and far-fields of repositories. This study focuses on investigating the sorption of ISA onto engineered barriers such as concrete, thereby studying adsorption isotherms of ISA on concrete and comparing various isotherm models with the experimental data. The adsorption experiment was conducted in three background solutions, groundwater (adjusted to pH 13 using NaOH), State 1 (artificial cement pore water, pH 13.3), and State 2 (artificial cement pore water, pH 12.5), in a batch system at a temperature of 20°C. Concrete was characterized using BET, Zeta-potential analyzer, XRD, XRF, and SEM-EDS. ISA concentrations were detected using HPLC. The experimental data were best fitted to one-site Langmuir isotherm; On the other hand, either two-site isotherm or Freundlich isotherm couldn’t give reasonable fitting to the experimental data. The observed ISA sorption behavior on concrete is crucial for the disposal of radioactive waste because it can significantly lower the concentration of ISA in the pore water. Although one-site Langmuir isotherm might effectively represent the sorption behavior of ISA on concrete, the underlying mechanism is still unknown, and further investigation should be done in the near future.
        77.
        2022.10 구독 인증기관·개인회원 무료
        During and after the construction of LILW disposal facilities, the decrease of groundwater head potential has been monitored. In addition, an increase of the electrical conductivity (EC) has been observed in several monitoring wells installed along the coastal coastline. Monitoring activity for groundwater head potential and hydrogeochemical properties is important to reduce the uncertainty in the evaluation of groundwater flow characteristics. However, the data observed in the monitoring wells are spatial point data, so there is a limit to the dimension. Several researchers evaluated groundwater head potential changes and seawater intrusion (SWI) potential for disposal sites using groundwater flow modeling. In case of groundwater flow modeling results for SWI, there is a spatial limit in directly comparing the EC observed in the monitoring wells with the modeling results. In a recent study, it was confirmed that the response of the long-range ground penetraiing radar (GPR) system was severely attenuated in the presence of saline groundwater. In order to reduce the spatial constraint of the groundwater monitoring wells for SWI, the characteristics of SWI within the disposal facility site by using the the results of a recent study of the long-range GPR system were investigated and evaluated in this study.
        78.
        2022.10 구독 인증기관·개인회원 무료
        In south Korea, most of uranium deposits are distributed in the Ogcheon belt, which is one of two late Precambrian to Paleozoic fold belts (the Imjingang and Ogcheon belts). A study site of the Ogcheon metamorphic belt (OMB) in Hoenam-myun, Boeun-gun was selected for the natural analogue study by preliminary site investigation for several candidate study sites. Three boreholes were drilled in the site and some rock cores and groundwater samples were taken from the boreholes. Various analytical studies for the samples are now being performed. Thus, in this study, various basic characteristics of the study site such as occurrence, geological, mineralogical, and chemical properties were investigated for a future study. Base rocks containing uranium in the OMB are usually black slate and coaly slate. Coaly slate usually shows a higher content of uranium and larger grain size of uranium than black slate. Uranium minerals found in the OMB are uraninite, uranothorite, brannerite, ekanite, coffinite, francevillite, uranophane, autunite, and torbernite depending on the base rock types. Uranothorite is abundant in black slate whereas uraninite is mostly abundant in coaly slate. Chemical compositions of the solid and groundwater samples from the study site were also analyzed by using ICP-MS/OES (Inductively Coupled Plasma Mass Spectrometry) and XRF (X-ray Fluorescence). This will contribute to determine uranium minerals in the solid samples and uranium speciation in the groundwater. The results of this study will contribute to performing future natural analogue studies in domestic uranium deposits and provide basic information and knowledge for understanding long-term geochemical behaviors of radionuclides in a high-level radioactive repository.
        1 2 3 4 5