검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 101

        81.
        2013.10 구독 인증기관·개인회원 무료
        Up to now the complete mitochondrial genome (mitogenome) sequences of only three species of clitellate have been available. We have determined the complete mitogenome sequences of the elusive Burmese giant earthworm Tonoscolex birmanicus (Clitellata: Megascolecidae), which is endemic to Myanmar. The 15,170-bp long genome contains the 37 genes typical of metazoan mitogenomes [13 protein-coding genes (PCG), two rRNA genes and 22 tRNA genes] and one major non-coding region. All of the 37 genes are transcribed from the same DNA strand. The arrangement of the T. birmanicus mitogenome is identical to that of two within-ordinal species Lumbricus terrestris and Perionyx excavates. All 13 PCGs start with the ATG. For the stop codon, only six PCGs end with the TAA, whereas the remaining ones ends with the incomplete stop codon, T. Genes overlap in a total of 14 bp in five locations, and harbor a total of 16 bp of intergenic spacer sequences in nine locations.
        82.
        2013.10 구독 인증기관·개인회원 무료
        Glyphodes quadrimaculalis (Lepidoptera: Crambidae) feed on a root tuber of Cynanchum wilfordii (Asclepiadaceae) that is one of the most famous traditional medicines in Korea. The genus Glyphodes includes ~130 species distributed worldwide, so the complete mitochondrial genome (mitogenome) would be helpful for bio-identification, biogeographic studies, and multigene-based phylogeny. The 15,255-bp long G. quadrimaculalis genome comprises 37 typical genes and one large non-coding region, with the typical arrangement found in Lepidoptera. Of the 13 protein coding genes (PCGs), 12 begin with typical start codons found in insect mitochondrial PCGs, but the COI gene starts with atypical CGA. One of the noteworthy features of the genome includes the presence of a 51-bp long non-coding space sequence located between tRNAGln and ND2 that reveals high sequence homology (71.4%) to the neighboring ND2 gene, indicating the origin of the region by partial duplication of the ND2 gene.
        83.
        2013.04 구독 인증기관·개인회원 무료
        The larch hawk moth, Sphinx morio, belongs to the lepidopteran family Sphingidae that has long been studied as a family of model insects in a diverse field. In this study, we describe the complete mitochondrial genome (mitogenome) sequences of the species in terms of general genomic features and characteristic short repetitive sequences found in the A+T-rich region. The 15,299-bp long genome consisted of a typical set of genes (13 protein-coding genes, two rRNA genes and 22 tRNA genes) and one major non-coding A+T-rich region, with the typical arrangement found in Lepidoptera. The 316-bp long A+T-rich region located between srRNA and tRNAMet harbored the conserved sequence blocks that are typically found in lepidopteran insects. Additionally, the A+T-rich region of S. morio contained three characteristic repeat sequences that are rarely found in Lepidoptera: two identical 12-bp repeat, three identical 5-bp long tandem repeat, and six nearly identical 5~6 bp long repeat sequences.
        84.
        2013.04 구독 인증기관·개인회원 무료
        In the present study, the 17,694-bp long complete mitochondrial genome (mitogenome) of the dwarf honey bee, Apis florea (Hymenoptera: Apidae), is described with an emphasis on the noteworthy triplicated tRNAser(AGN) region and an extraordinary long A+T-rich region with repeat regions. The gene arrangement of A. florea mitogenome is identical to that of A. mellifera, but has triplicated tRNASer(AGN), each of which contains the precedent 44 bp-long and following another 64 bp-long repeats plus one complete first repeat abutting to tRNAMet. A total of 1,610-bp long two repeat regions in 1,987 bp-long A+T-rich region is composed of nearly identical 141 ~ 219-bp long five tandem repeats and 50 ~ 52-bp long 12 tandem repeats that are encompassed by three non-repeat sequences. One of the common interpretations for such repeat sequence is slipped-strand mispairing and unequal crossing-over events during DNA replication.
        85.
        2013.04 구독 인증기관·개인회원 무료
        Gene arrangement in the mitochondrial genome (mitogenome) has been regarded as an important evolutionary event that is useful as a phylogenetic signal. The mountainous duskywing, Erynnis montanus, belongs to a lepidopteran family Hesperiidae. We sequenced 15,530-bp long complete mitogenome of the species. The genome has the typical gene content of animals (13 protein-coding genes, two rRNA genes, 22 tRNA genes, and one major non-coding A+T-rich region). Further, E. montanus mitogenome also contained a high A/T content in the whole genome (81.7%) and the CGA (arginine) as the start codon for the COI gene, as typical in lepidopteran mitogenome. However, unlike other lepidopteran species, including two sequenced skippers, the E. montanus mitogenome has a unique arrangement tRNASer-tRNAAsn, instead of the tRNAAsn-tRNASer found unanimously in other lepidopteran species, providing a new gene arrangement in Lepidoptera. Such rearrangement probably was likely caused by duplication of gene block tRNASer-tRNAAsn and subsequent random loss of tRNAAsn in the first copy and tRNASer in the second copy, resulting in the arrangement tRNASer-tRNAAsn. Considering current phylogenetic relationships among available lepidopteran groups in connection with lepidopteran gene arrangement the new gene arrangement found in E. montanus seems to be apomorphy, requiring cautious interpretation as a phylogenetic signal.
        86.
        2011.10 구독 인증기관·개인회원 무료
        The black-veined white, Aporia crataegi (Lepidoptera: Papilionoidea), is nearly extinct in South Korea, although substantial numbers of dried specimens are available. One of the common practices for such species is to launch re-introduction program after proper amount of genetic information are analyzed from donor and donee populations. In this study, we sequenced complete mitochondrial genome (mitogenome) of A. crataegi to design species-specific primers for subsequent population works and to further understand the mitogenome evolution in lepodiopteran Papilionoidea. The 15,140-bp long A. crataegi mitogenome that has typical sets of 37 genes is smallest among true butterfly species with overall slightly smaller size in genes and regions throughout the genome. Arrangement of the genome is identical to those of other lepidopteran mitogenomes, in which tRNA cluster located between the A+T-rich region and ND2 gene is translocated into tRNAMet, tRNAIle, and tRNAGln from ancestral arrangement, tRNAIle, and tRNAGln, tRNAMet. The A/T content of the genome at 81.3% is the highest in Pieridae, but lower than that of lycaenid species (81.7% ~ 82.7%) The high A/T content in the genome is also reflected in codon usage, accounting for 41.69% of A/T-composed codons (TTA, ATT, TTT, and ATA). Unlikely the diversified or modified usage of anticodon for tRNASer(AGN) the species of Pieridae including A. crataegi all unanimously have GCT that has been hypothesized as ancestral for Lepidoptera. A total of 111 bp of non-coding sequences are dispersed in 13 regions, ranging in size from 1–49 bp. Among them relatively longer ones (≥ 16 bp) all have relatively higher sequence identity to other regions of the genome, suggesting partial duplication of the sequences during A. crataegi evolution. As has been reported in some species of Lepidoptera, the A. crataegi A+T-region also has typically found conserved sequences (e.g., poly-T stretch, ATAGA motif, ATTTA element, microsatellite-like A/T sequence, and poly-A stretch) and one tRNA-like sequence, and this feature was commonly found in true butterfly species.
        87.
        2011.10 구독 인증기관·개인회원 무료
        The complete mitogenome (20,456 bp) of Challia fletcheri (Dermaptera: Pygidicranidae) as the first dermapteran insect is the longest among sequenced insects. The genome contained typical gene sets, but harbored the largest TRU among Exopterygota and Palaeoptera. The AT- and GC-skewness showed more Ts and Gs encoded on the major strand, whereas more As and Cs on the minor strand, presenting a reversal to the general pattern found in most insect mitogenomes. This pattern was explained in terms of inversion of replication origin. The gene arrangement of C. fletcheri genome is unique in insects and differs from the ancestral type found in insects by a series of gene translocations and/or inversions. We hypothesize that the markedly different gene arrangement is probably due to some unique organism-level properties, which allow relaxed selection against mitochondrial gene rearrangement. All phylogenetic analyses consistently placed Orthoptera as the sister to the group composed of a monophyletic Isoptera + Mantodea + Blattodea and a monophyletic Grylloblattodea + Mantophasmatodea + Phasmatodea, and placed Dermaptera as the sister to Plecoptera, leaving them as the most basal lineage of Polyneoptera.
        88.
        2011.05 구독 인증기관·개인회원 무료
        The Samia cynthia ricini (Lepidoptera: Saturniidae) is a commercial silk-producing insect belonging to an insect family Saturniidae in Bombycoidea. The species that has presumably been originated in India, is distributed in India, China, and Japan. Unlikely domestic silkworm the prime host plant for the species is a castor-oil plant (Ricinus communis in Euphorbiaceae). Recently, the eri-silkworm also is reared in Korea and is expected to be utilized for a diverse purpose. In this report, we present the complete mitochondrial genome of the species with the emphasis of a few major characteristics. The 15,384-bp long S. cynthia ricini (Lepidoptera: Saturniidae) mitochondrial genome was amplified into three long overlapping fragments (from COI ~ ND4, ND5 ~ lrRNA, and lrRNA ~ COI) and subsequent several short fragments using the long fragments as temperate. The primers for both long and short fragments were designed solely for lepidopteran genomes, without any species-specific primers. As a usual the genome is composed of 37 genes: 13 protein-coding genes (PCGs), two rRNA genes, and 22 tRNA genes, and one large non-coding region termed the A+T-rich region. Arrangement of the genome is identical to those of other lepidopteran mitochondrial genome, but this differs from the common arrangement found in a diverse insect order, by the movement of tRNAMet to a position 5’- up stream of tRNAIle. Unlikely previous report on the start codon for COI gene in Lepidoptera S. cynthia ricini COI gene starts with typical ATT codon located between tRNATyr and the beginning region of COI gene. The 22 tRNAs that are interspersed throughout the mitogenome ranged in length from 62 to 71 bp. All tRNAs but tRNASer(AGN) were shown to be folded into the expected cloverleaf secondary structures. More detailed structural and phylogenetic analyses among Bombycidae and Saturniidae in connection with other families in the Bombycoidea will be performed soon
        89.
        2011.05 구독 인증기관·개인회원 무료
        The complete mitochondrial genome sequence of the nerippe fritillary butterfly, Argynnis nerippe, which is listed as an endangered species in Korea, is described with an emphasis on the A+T-rich region. The 15,140-bp long circular molecule consisted of 13 protein-coding genes, two rRNA genes, 22 tRNA genes and one control region, known in insect as the A+T-rich region, as found in typical metazoans. The 329-bp long A+T-rich region located between srRNA and tRNAMet possessed the highest A/T content (95.7%) than any other region of the genome. Along with the several conserved sequences found typically in the lepidopteran insects the genome contained one tRNAMet-like and tRNALeu(UUR) -like sequence in the A+T-rich region.
        90.
        2009.05 구독 인증기관·개인회원 무료
        We have determined the complete mitochondrial genome of the yellow-spotted long horned beetle, Psacothea hilaris (Coleoptera: Cerambycidae), an endangered insect species in Korea. The 15,856-bp long P. hilaris mitogenome harbors gene content typical of the animal mitogenome and a gene arrangement identical to the most common type found in insect mitogenomes. As with all other sequenced coleopteran species, the 5-bp long TAGTA motif was also detected in the intergenic space sequence located between tRNASer (UCN) and ND1 of P. hilaris. The 1,190-bp long non-coding A+T-rich region harbors an unusual series of seven identical repeat sequences of 57-bp in length and several stretches of sequences with the potential to form stem-and-loop structures. Furthermore, it contains one tRNAArg-like sequence and one tRNALys-likes equence. Phylogenetic analysis among available coleopteran mitogenomes using the concatenated amino acid sequences of PCGs appear to support the sister group relationship of the suborder Polyphaga to all remaining suborders, including Adephaga, Myxophaga, and Archostemata. Among the two available infraorders in Polyphaga, a monophyletic Cucujiformia was confirmed, with the placement of Cleroidea as the basal lineage for Cucujiformia. On the other hand, the infraorder Elateriformia was not identified as monophyletic, thereby indicating that Scirtoidea and Buprestoidea are the basal lineages for Cucujiformia and the remaining Elateriformia.
        91.
        2009.05 구독 인증기관·개인회원 무료
        The complete nucleotide sequences of the mitochondrial genome (mitogenome) from the white-spotted flower chafer, Protaetia brevitarsis (Coleoptera: Cetoniidae) was determined. The 20,319-bp long circular genome is the longest among the completely sequenced arthropods. This extraordinary length of the genome stemmed from 5,654-bp long A+T-rich region composed of twenty-eight 117-bp tandem repeats, seven 82-bp tandem repeats, and each two 19-bp and 38-bp tandem repeats. The P. brevitarsis contains a typical gene complement, order, and arrangement identical to most common type found in insects. The P. brevitarsis COI gene does not have typical ATN codon. Thus, we also designated it as AAC (asparagine), which is found in the start context of all sequenced Polyphaga within Coleoptera. All tRNAs showed stable canonical clover-leaf structure of other mt tRNAs, except for tRNASer (AGN), DHU arm of which could not form stable stem-loop structure. The 5bp-long motif sequence (TAGTA) that has been suggested to be the possible binding site for the transcription termination peptide for the major-strand also was found betweent RNASer (UCN) and ND1, as have been detected in all sequenced coleopteran insects.
        92.
        2008.10 구독 인증기관·개인회원 무료
        The 15,338-bp long complete mitochondrial genome (mitogenome) of the Japanese oak silkmoth, Antheraeayamamai (Lepidoptera: Saturniidae) was determined. This genome has a gene arrangement identical to those of all other sequenced lepidopteran insects, but differs from the most common type, as the result of the movement of tRNAMet to a position 5’-upstream of tRNAIle. No typical start codon of the A. yamamai COI gene is available. Instead, a tetranucleotide, TTAG, which is found at the beginning context of all sequenced lepidopteran insects was tentatively designated as the start codon for A. yamamai COI gene. Three of the 13 protein-coding genes (PCGs) harbor the incomplete termination codon, T or TA. All tRNAs formed stable stem-and-loop structures, with the exception of tRNASer(AGN), the DHU arm of which formed a simple loop as has been observed in many other metazoan mt tRNASer(AGN). The 334-bp long A+T-rich region is noteworthy in that it harbors tRNA-likestructures, as has also been seen in the A+T-rich regions of other insect mitogenomes. Phylogenetic analyses of the available species of Bombycoidea, Pyraloidea, and Tortricidea bolstered the current morphology-based hypothesis that Bombycoidea and Pyraloidea are monophyletic (Obtectomera). As has been previously suggested, Bombycidae (Bombyxmori and B.mandarina) and Saturniidae (A.yamamai and Caligula boisduvalii) formed a reciprocal monophyletic group.
        93.
        2008.10 구독 인증기관·개인회원 무료
        We determined the complete mitochondrial genome of the yellow-spotted long horned beetle, Psacothea hilaris (Coleoptera: Cerambycidae) that is an endangered insect species in Korea. The genome was sequenced from four overlapping fragments: two short fragments and two long fragments. The 15,857-bp long P. hilaris mitochondrial genome has the gene content typical of animal mitochondrial genome: 13 protein-coding genes, 22 tRNA genes, 2 ribosomal genes, and one non-coding A+T-rich region. The gene arrangement of the molecule is identical to the most common type found among insect mitochondrial gene arrangement that is regarded as ancestral for insects. Like several other coleopteran species the P. hilaris COI gene has typical mitochondrial start codon ATT. The 1,190-bp long A+T-rich region contains 57-bp long seven identical repeat sequences and at least seven stem-and-loop structures, composed of stems with perfect matches and loops with variable size. All P. hilaris tRNAs can be folded into the typical clover-leaf structure, with the exception of tRNASer(AGN), the dihydrouridine (DHU) arm of which forms a simple loop. After more genomic and phylogenetic analyses are performed, further detailed information will be available.
        94.
        2008.10 구독 인증기관·개인회원 무료
        In this study, we determined the complete mitochondrial genome of the jewel beetle, Chrysochroa fulgidissima (Coleoptera: Buprestidae), from four overlapping fragments. The 15,592-bp long C. fulgidissima mitogenome exhibits a gene arrangement and content identical to the most common type in insects. The start codon of the C. fulgidissima COI gene is unusual, in that no typical ATN codon is available. The 875-bp A+T-rich region is the shortest among the coleopteran mitogenomes that have thus far been sequenced in their entirety. The most unusual feature of the genome is the presence of three tRNA-like sequences within the A+T-rich region: two tRNALeu(UUR)-like sequences and one tRNAAsnlike sequence. These sequence stretches evidence the proper anticodon sequence and the potential to form secondary structures, but also harbor many mismatches in the stems. Phylogenetic analysis using a concatenation of 13 amino acid sequences of protein-coding genes among the available sequenced species of coleopteran superfamilies (Buprestoidea and Elateroidea belonging to the infraorder Elateriformnia, and Chrysomeloidea and Tenebrioroidea belonging to the infraorder Cucujoiformia) by Bayesian inference, maximum-parsimony analyses, and maximum-likelihood analysis unexpectedly revealed a lack of support for monophyletic Elateriformia.
        95.
        2008.10 구독 인증기관·개인회원 무료
        The 15,389-bp long complete mitochondrial genome (mitogenome) of the redspotted apollo butterfly, Parnassius bremeri (Lepidoptera: Papilionidae) was determined. This genome has a gene arrangement identical to those of all other sequenced lepidopteran insects, but differs from the most common type, as the result of the movement of tRNAMet to a position 5’-upstream of tRNAIle. No typical start codon of the P. bremeri COI gene is available. Instead, a tetranucleotide, TTAG, which is found at the beginning context of all sequenced lepidopteran insects was tentatively designated as the start codon for P. bremeri COI gene. All protein-coding genes (PCGs), but COII (T) have complete termination codon TAA or TAG. One of the most unusual feature of the P. bremeri mitochondrial genome is the presence of two tRNA-like structures, such as the tRNATrp-like sequence and tRNALeu (UUR)-like sequence with proper anticodon and clover-leaf structures in the 514-bp long A+T-rich region. Furthermore, the A+T-rich region possesses three sequences that have the potential to form stem-and-loop structures, flanked by the conserved sequences, "TA(A)TA" at the 5’ end and "G(A)nT’ at the 3’ end. After more genomic and phylogenetic analyses are performed, further detailed information will be available.
        96.
        2008.10 구독 인증기관·개인회원 무료
        The completely sequenced mitochondrial genome of the brown marmorated stink bug, Halyomorpha halys, is a circular molecule of 16,518 bp with a total A+T content of 76.4%. Nucleotide composition and codon usage of this genome are near the means observed in other 12 hemipteran mitochondrial genomes; however, the initiation codon for CO1 gene appears to be TTG, dissimilar to what has been seen in the 12 mitochondrial genomes. In this genome, the A+T rich region between srRNA and tRNAIle gene includes two extensive repeat regions, in which each region includes 4 and 12 tandem repeats of a 73 bp sequence, respectively. The gene content, order, and structure of the H. halys mitochondrial genome are consistent with that of Triatoma dimidiata, belong to the same suborder Heteroptera, but different from two suborders, Auchenorrhynca and Sternorrhyncha, including various gene rearrangements. Analyzing phylogenetic relationship and comparing gene order and content of the 13 hemipteran mitochondrial genomes of three suborders, Heteroptera, Auchenorrhynca, and Sternorrhyncha, supported the morphology-based current hypothesis that both Auchenorrhynca and Sternorrhyncha are a monophyletic group.
        1 2 3 4 5