검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 405

        133.
        2015.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fatigue crack growth rate tests were conducted as a function of temperature, dissolved hydrogen (DH) level, and frequency in a simulated PWR environment. Fatigue crack growth rates increased slightly with increasing temperature in air. However, the fatigue crack growth rate did not change with increasing temperature in PWR water conditions. The DH levels did not affect the measured crack growth rate under the given test conditions. At 316 oC, oxides were observed on the fatigue crack surface, where the size of the oxide particles was about 0.2 μm at 5 ppb. Fatigue crack growth rate increased slightly with decreasing frequency within the frequency range of 0.1 Hz and 10 Hz in PWR water conditions; however, crack growth rate increased considerably at 0.01 Hz. The decrease of the fatigue crack growth rate in PWR water condition is attributed to crack closure resulting from the formation of oxides near the crack tips at a rather fast loading frequency of 10 Hz.
        4,000원
        134.
        2015.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Since the commercial operation of Kori Unit #1 nuclear power plant(NPP) started in 1978, 23 units at present are operating in Korea. Radioactive wastes will be steadily generated from these units and accumulated. In addition, the life-extension of NPPs, construction of new NPPs and decontamination and decommissioning research facilities will cause radioactive wastes to increase. Recently, Korea has revised the new classification criteria as was proposed by IAEA. According to the revised classification criteria, low-level, very-low-level and exempt waste are estimated to about 98% of total disposal amount. In this paper, current status of overseas cases and disposal method with new classification criteria are analyzed to propose the most reasonable method for estimating the amount of decommissioning waste when applying the new criteria.
        4,000원
        135.
        2015.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the influence of probabilistic variability in stiffness and nonlinearity of soil on response of nuclear power plant (NPP) structure subjected to seismic loads considering the soil-structure interaction (SSI). Both deterministic and probabilistic methods have been employed to evaluate the dynamic responses of the structure. For the deterministic method, SRPmin method given in USNRC SRP 3.7.2(2013) (envelope of responses using three shear modulus profiles of lower bound(GLB), best estimate(GBE) and upper bound(GUB)) and SRPmax method (envelope of responses by more than three ground profiles within range of GLB≤G≤GUB) have been considered. The probabilistic method uses the Latin Hypercube Sampling (LHS) that can capture probabilistic feature of soil stiffness defined by the median and the standard deviation. These analysis results indicated that 1) number of samples shall be larger than 60 to apply the probabilistic approach in SSI analysis and 2) in-structure response spectra using equivalent linear soil profiles considering the nonlinear behavior of soil medium can be larger than those based on low-strain soil profiles.
        4,300원
        136.
        2015.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper presents a detailed procedure for a nonlinear soil-structure interaction of a seismically isolated NPP(Nuclear Power Plant) structure using the boundary reaction method (BRM). The BRM offers a two-step method as follows: (1) the calculation of boundary reaction forces in the frequency domain on an interface of linear and nonlinear regions, (2) solving the wave radiation problem subjected to the boundary reaction forces in the time domain. For the purpose of calculating the boundary reaction forces at the base of the isolator, the KIESSI-3D program is employed in this study to solve soil-foundation interaction problem subjected to vertically incident seismic waves. Wave radiation analysis is also employed, in which the nonlinear structure and the linear soil region are modeled by finite elements and energy absorbing elements on the outer model boundary using a general purpose nonlinear FE program. In this study, the MIDAS/Civil program is employed for modeling the wave radiation problem. In order to absorb the outgoing elastic waves to the unbounded soil region, spring and viscous-damper elements are used at the outer FE boundary. The BRM technique utilizing KIESSI-3D and MIDAS/Civil programs is verified using a linear soil-structure analysis problem. Finally the method is applied to nonlinear seismic analysis of a base-isolated NPP structure. The results show that BRM can effectively be applied to nonlinear soil-structure interaction problems.
        4,000원
        137.
        2015.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Base isolation is considered as a seismic protective system in the design of next generation Nuclear Power Plants (NPPs). If seismic isolation devices are installed in nuclear power plants then the safety under a seismic load of the power plant may be improved. However, with respect to some equipment, seismic risk may increase because displacement may become greater than before the installation of a seismic isolation device. Therefore, it is estimated to be necessary to select equipment in which the seismic risk increases due to an increase in the displacement by the installation of a seismic isolation device, and to perform research on the seismic performance of each piece of equipment. In this study, modified NRC-BNL benchmark models were used for seismic analysis. The numerical models include representations of isolation devices. In order to validate the numerical piping system model and to define the failure mode, a quasi-static loading test was conducted on the piping components before the analysis procedures. The fragility analysis was performed by using the results of the inelastic seismic response analysis. Inelastic seismic response analysis was carried out by using the shell finite element model of a piping system considering internal pressure. The implicit method was used for the direct integration time history analysis. In addition, the collapse load point was used for the failure mode for the fragility analysis.
        4,000원
        138.
        2015.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The nuclear accident due to the recent earthquake in Japan has triggered awareness of the importance of safety with regard to nuclear power plants (NPPs). An earthquake is one of the most important parameters which governs the safety of NPPs among external events. Application of a base isolation system for NPPs can reduce the risk for earthquakes. At present, a soil-structure interaction (SSI) analysis is essential in the seismic design of NPPs in consideration of the ground structure interaction. In the seismic analysis of the base-isolated NPP, it is restrictive to consider the nonlinear properties of seismic isolation devices due to the linear analysis of the SSI analysis programs, such as SASSI. Thus, in this study, SSI analyses are performed using an iterative approach considering the material nonlinearity of the isolators. By performing the SSI analysis using an iterative approach, the nonlinear properties of isolators can be considered. The difference between the SSI analysis results without iteration and SSI with iteration using SASSI is noticeable. The results of the SSI analysis using an effective linear (non-iterative) approach underestimate the spectral acceleration because the effective linear model cannot consider the nonlinear properties of isolators. The results of the SSI analysis show that the horizontal response of the base-isolated NPP is significantly reduced.
        4,000원
        139.
        2015.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper presents the performance improvement of an EQS (Eradic Quake System) device applied to a nuclear power plant. For the nuclear facility, the EQS device needs to be ensured to have high quality, flexibility of design and reliability. To improve the reliability of the design, the hysteresis of the device must be exactly predicted. The friction coefficient of PTFE (PolyTetraFluoroEthylene) and the stiffness of the MER-Spring are considered as the factors influencing the hysteresis curve. In this paper, those factors are analysed to predict the behavior of the device and to improve the equipment of the EQS device. The results of the improved EQS device have been verified via a tests to be comparable with the predicted results. The estimation results indicate that considering those factors is more appropriate than the results of the previous design and method.
        4,000원
        140.
        2015.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to perform a soil-isolation-structure interaction analysis of seismically isolated nuclear power plant (NPP) structures, the nonlinear behavior of a seismic isolation system may be converted to an equivalent linear model used in frequency domain analysis. Seismic responses for seismically isolated NPP containment structures subjected to a simple artificial acceleration history and different site class earthquakes are evaluated for the equivalent-linear and nonlinear models that have been applied to lead-rubber bearing (LRB) modeling. It can be observed that the maximum displacements of the equivalent linear model are larger than that of the nonlinear model. From the floor response spectrum analysis for the top of NPP containment structures, it can be observed that the spectral acceleration of an equivalent linear model at about 0.5 Hz frequency is about 2~3 times larger than that of a nonlinear model.
        4,200원