자율주행에 관한 관심은 전 세계적으로 증가하고 있으며, 글로벌 자동차 제조사들과 기술기업들이 자율주행 분야에 대한 투자를 늘 리고 있어 향후 자동차 산업과 교통체계 전반에 큰 변화가 전망된다. 이처럼 자율주행 관련 연구와 개발은 끊임없이 진보하고 있으며, 관련 연구 수행은 계속해서 이루어질 것으로 보인다. 연구 수행에 있어 동향 파악은 필수 요소이며, 본 연구에서는 국내 자율주행 연 구 동향을 분석하고자 한다. 연구 동향을 분석한 다양한 분야의 선행연구 검토 결과, 각각 연구 목적에 맞는 다양한 데이터베이스를 이용하여 데이터를 수집하였으며 연구 주제어 혹은 초록을 분석데이터로 활용하였음을 확인하였다. 자율주행 연구 동향에 대해 분석 한 선행연구 검토 결과, 기존 연구들은 분야를 구분하지 않고 연구를 수집·분석하였음을 확인하였다. 자율주행은 도로, 교통, 자동차, 기계, 컴퓨터, 전자, 전기 등 다양한 분야를 포함하고 있기에 분야별 연구 동향 분석이 필요하다. 이에 본 연구에서는 도로·교통 분야 의 동향 분석을 위해 최근 5년간(2019년~2023년) 국내 도로·교통 분야 등재 학술지에 게재된 학술 논문을 대상으로 연구 동향을 분석 하였으며, 보다 많은 텍스트 데이터를 활용하기 위해 주제어가 아닌 초록을 활용하였다. 키워드 출현 빈도 분석을 통해 주요 키워드를 도출하였으며, 토픽 모델링을 통해 주요 연구주제를 도출하였다. 본 연구에서 수행한 자율주행 연구 동향 파악은 도로·교통 분야에서 향후 수행될 자율주행 연구 방향 수립에 시사점을 제공할 것이라 기대된다.
우리나라에서는 「모빌리티 혁신 및 활성화 지원에 관한 법률」을 제정하여 전국적으로 첨단모빌리티 사업을 활성화할 수 있는 틀 을 마련하였다. 그러나 모빌리티혁신법 내 첨단모빌리티 수단이 이용하는 친화적 도로설계에 대한 가이드라인이 부재한 상황이다. 본 연구에서는 모빌리티혁신법 내 제9조 ‘첨단모빌리티 친화적 도로환경 조성’의 원활한 사업 시행을 위해 디지털 인프라를 중심으로 가 이드라인을 제안한다. 친화적 도로를 이용하는 첨단모빌리티 도로 대상을 선정한 후 이를 토대로 요구되는 디지털 인프라를 고려하였 다. 디지털 인프라는 도로에 대한 정보를 디지털화 하는 것을 목적으로 설정하여 ① 디지털 도로, ②디지털 관리, ③디지털 트윈 3가 지로 구분지어 가이드라인을 제시하였다. 이는 지방자치단체에서 첨단모빌리티 사업 시행 시 필수적으로 고려해야 할 인프라를 검토 할 수 있을 것이다
In South Korea, the level of Highway Pavement Management System (HPMS) was developed since early 2000. During this time numbers of professional pavement condition monitoring equipment were developed and applied in the actual field. One of the remarkable results is 3D Pavement condition Monitoring profiler vehicle (3DPM) designed and developed in Korea Expressway Corporation Research Division (KECRD). Thanks to this equipment, The surface condition of current pavement can successfully be monitored and proper following management strategy cab be established. However, the inner condition of pavement layer cannot be monitored dur to limitation of 3DPM equipment. In this paper, Bending Beam Rheometer (BBR) mixture creep test was performed to verify the effectiveness of current 3DPM equipment. It was found that the current 3DPM equipment has reasonable feasibility on surveying pavement condition.
Evaluation of low temperature performance of asphalt mixture is significant not only for mitigating transverse thermal cracking but also for preventing potential traffic accidents. In addition, the engineers in pavement agency need to inform the proper pavement section where urgent management is needed. Since early 2000, Korea Expressway Corporation Research Division (KECRD) developed an 3D Pavement condition Monitoring profiler vehicle (3DPM) to survey expressway pavement surface condition precisely. The management of whole expressway network became more precise, effective and efficient than before due to application of 3DPM and HPMS. One thing recommended is: performing extensive mechanical test and corresponding data analysis work procedure to further strengthen the feasibility of current 3DPM approach and HPMS. In this paper two activities were considered: first, the pavement section where the urgent care is recommended is selected by means of 3DPM approach. Then asphalt mixture cores were acquired on that specified section then low temperature fracture test: Semi Circular Bending (SCB) test, was performed. The mechanical parameters, energy release rate and fracture toughness were computed then compared. It is concluded that the current 3DPM approach in KEC can successfully evaluate and analyze selected pavement condition. However, more extensive experimental works are needed to further strengthen the current pavement analyzing approaches.
인공지능(Artificial Intelligence, AI)은 1950년대 초기개념과 이론을 앨런 튜링이 튜링 테스트를 제안하여 기계가 인간과 같은 수준의 지능을 가질 수 있는지 대한 질문을 던지면서 시작되었다. 1980년대부터 특정 분야의 전문 지식을 모방하여 지원하는 AI 시스템인 전 문가 시스템이 부상하기 시작하면서 Machine Learning이 중요성을 얻기 시작하였다. 특히, Decision Tree, Clustering 그리고 Neural Network Algorithm 등이 연구되기 시작하였다. Clustering 기법은 다양한 분야에서 통계분석에 사용되는 자료를 정제하기 위한 비지도 학습 중 하나로, 군집화 알고리즘을 사용하여 자료의 값(Pointer)들을 특정 그룹으로 분류하는 방법이다. 이러한 Clustering을 활용하여 기존 데이터에서 숨겨진 데이터들의 특성을 파악할 수 있으며, 일정 패턴이나 특징을 가진 데이터들끼리의 군집화를 할 수 있게 된다. 이러한 클러스터링은 다양한 산업 분야에서 적용 및 활용하고 있다. 산업화 이후 미국, 벨기에 등 많은 나라에서 효율적인 도로 관 리를 위해 자국의 특성에 맞는 Pavement Management System (PMS)를 운영하고 있지만 현재 많은 분야에서 적용하고 있는 AI를 활용한 사례가 매우 드물다. 한국에서도 수십년 동안 국토교통부와 한국도로공사에서 PMS를 이용하여 도로를 관리해 왔으며, 최근에 는 몇 개 지자체에서 PMS를 도입하였다. 하지만 한국에서는 오랜 PMS 운영 경험에도 불구하고 AI를 활용하지 않고 전통적 방법인 회귀모형을 활용하여 개발한 공용성 예측모형을 사용하고 있기 때문에 그 성능이 떨어지고 있다. 따라서 본 연구에서는 Machine Learning Clustering 기법을 PMS 자료에 적용이 가능한지 확인하였다. 공용성 예측모형의 종속변수인 Performance Factors와 독립변 수인 Influencing Factors 간의 상관성을 확인할 수 없는 경우 클러스터링을 적용하여 종속변수와 독립변수 간의 상관성을 분명히 나 타내고 회귀분석이 가능하도록 하였다. Delaunay Triangulation을 적용하여 인천광역시 기상관측소의 삼각망을 형성하였다. 삼각망의 각 꼭짓점과 도로 각 지점 간의 거리에 대하여 Inverse Distance Weighted 방법을 적용하여 도로 각 구간의 PMS 자료와 영향인자를 매칭하였다. 클러스터링 기법을 원자료에 적용한 결과 공용성인자와 영향인자 간의 상관성이 분명해졌다. 또한, 클러스터링 이전과 이 후 자료의 확률밀도함수의 분포를 비교하여 클러스터링 이후의 자료가 이전의 대해서 대표성을 갖고 있는지 확인하였다.
본 연구에서는 국내 아스팔트 도로 현장에서 발생한 동절기 도로융기 현상의 발생 원인을 현장 규명하고 동결융해 피해를 보수하고 자 현장조사, 현장 LFWD실험 및 포장 코어채취, 지하수위 측정, 기상데이터 및 설계자료 분석 등을 실시하였다. 본 연구의 동상 원인 분석은 추후 동결융해 피해 재발방지를 위한 적정한 보수보강공법을 선정하기 위해 수행하였다. 분석과정은 지하수위 상승에 의한 동 상피해 가능성, 동결깊이 과소설계에 의한 동결융해 가능성, 포장면 표면수 유입에 의한 동결융해 가능성, 도로 외측 비포장면을 통한 수분유입과 이에 의한 동결융해 가능성으로 조사하여 동상 원인을 파악하였다. 또한 현장에서 소형충격 재하시험 LFWD(Falling Weight Deflctometer)시험을 하여 포장의 구조적 지지력을 측정하여 얻은 처짐값을 통해 포장체 구조적 능력을 분석함과 동시에 도로융기와의 연관성을 파악하여 균열분석 결과를 함께 분석하고 보수방법을 제안하였다.
국토교통부는 2020년 '결빙 취약구간 평가 세부 배점표’에 따라, 전국의 고속국도와 일반국도를 대상으로 410개 구간의 결빙 취약구 간을 선정하였다. 그러나, 2021년 감사원의 결빙 취약구간 지정 적정성 감사 결과에서 감사원은 현재 지정ㆍ관리 중인 결빙 취약구간 및 결빙 취약구간 평가 세부 배점표의 적정성에 문제를 제기하였다. 이에, 국토교통부는 결빙 취약구간을 재지정하여 발표하였으나 그 에 대한 평가 및 지정 적정성 검증이 아직 이루어지지 않았다. 본 연구에서는 결빙 취약구간과 결빙사고 데이터의 위치정보를 수집하여 GIS(Geographic Information System) 데이터로 구축하고 맵핑(Mapping)하여 결빙 취약구간 내 결빙사고이력을 확인함으로서 결빙 취약구간의 결빙사고 예측성능을 평가하였다. 또한, 각 결빙 사고 발생지점에서 도로시설, 교통, 선형구조, 환경인자 데이터를 수집하여 분석한다. 이를 통해 결빙사고와 각 인자 간의 상관성을 파 악하고, 그 결과에 따라 결빙 취약구간 평가 세부 배점표의 평가항목 및 각 항목별 배점을 수정하고 보완함으로써 결빙 취약구간의 신뢰성을 제고한다.
최근 국내 겨울철 블랙아이스(Black Ice)로 인해 발생하는 교통사고가 증가하는 추세이며, 한국 도로교통공단 조사 결 과 2016~2020년 겨울철까지 블랙아이스로 인한 사고는 총 4,868건이며, 사상자는 8,938명인 것으로 조사 되었다. 도로상 태에 따라 건조대비 동결상태에서 교통사고 발생시 치사율이 43%로 높게 나타났다. 이러한 사고는 기온이 떨어지는 12 월부터 급증하여, 최저기온이 가장낮은 1월까지 증가한다. 블랙아이스는 도로에 쌓인 눈이 융해(해설)과 동시에 도로 위 각종 이물질과 결합 후 재동결하여 흑색 동결막을 형성하는 것을 말한다. 그 특성상 운전자가 차량내부에서 도로의 상태 를 쉽게 파악할 수 없으며 대부분의 운전자가 차량이 미끄러지기 시작함과 동시에 인지하여 사고가 발생하게 된다. 이에 본 연구에서는 기존 포장체의 미끄럼 저항도를 상태별로 비교 분석하였다. 포장체의 미끄럼 저항성 정도를 파악하기 위 해 영국식 미끄럼저항 시험기 (British Pendulum Tester ; BPT)를 사용하였으며, 포장체의 종류로는 일반적인 밀입도 아스팔트 포장, 배수성 아스팔트 포장, 그루빙(포장 표면에 일정한 규격의 홈을 형성)을 적용한 콘크리트 포장, 그루빙이 없는 콘크리트 포장을 적용하였다. 미끄럼저항 실험은 관련 KS규격 및 ASTM규격에 준하여 실시하되 블랙아이스를 모 사하기위하여 표면온도 영하 2~3℃ 샘플에 강우를 모사한 물을 분사하며 영하 9℃로 10분 동결 후 2mm강수량을 모사 한 수분을 재 분사한 후 시험을 실시하였다.
도로의 포장 상태의 노후화나 관리미흡으로 인하여 시민의 사유 재산 중 주요한 요소인 자동차 등의 손상이나 자동차 사고 로 이어질 수 있어 큰 사회적 비용이 발생할 뿐 아니라, 시민들의 불편과 불만을 초래할 수 있다. 최근 도로 포장의 경우 포트홀 발생 건수와 그에 따른 민원 및 소송 건수가 증가해 행정력 및 예산이 낭비되고 있으며, 서울시의 경우 포장도로 노후화 추이가 증가함에 따라 유 지 관리 비용 또한 증가하고 있다. SOC 시설물 안전성 강화에 대한 사회적 요구는 지속적으로 증가하고 있어 한정된 예산의 효율적 활용을 위한 첨단 유지관리기술 도입이 시급하다.
자율주행차 상용화 시대를 가속화하기 위해 실제 도로에서 다양한 실증 프로젝트를 수행중이다. 그러나, 자율주행차와 비자율주행차 가 혼재된 혼합교통류 환경에서 발생할 수 있는 다양한 문제의 원인을 파악하고 선제적인 안전대책을 강구하는 노력은 미비한 실정이 다. 특히, 기존 비자율주행차 측면의 주행안전성을 고려하여 설계된 도로 시설 특성으로 인해 자율주행차의 주행안전성이 저하될 수 있다. 또한 기존 비자율주행차의 주행안전성을 저해함과 동시에 자율주행차의 주행안전성도 저해하는 도로 시설 특성이 존재할 가능 성이 있다. 본 연구에서는 상암 자율주행차 시범운행지구에서 수집된 automated vehicle data (AVD)를 활용하여 자율주행차와 비자율주 행차의 주행안전성을 평가하고 도로 시설 특성 측면의 영향요인을 도출하였다. 주행모드별 주행안전성 평가를 위해 autonomous emergency braking system (AEBS) 위험 이벤트 기반의 driving risk index (DRI)를 개발하였다. 구간별 DRI가 발생하지 않은 구간을 very good으로 정의하고 발생한 구간을 25 percentile로 구분하여 good, moderate, poor, very poor 등급으로 정의하여 총 5개의 등급으로 구분 하였다. 또한, 현장조사을 수행함으로써 구간별 포함되어 있는 도로 시설 특성을 수집하였다. 주행모드별 주행안전성에 영향을 미치는 도로 시설 특성을 도출하기 위해 이항로지스틱 회귀분석을 수행하였다. 종속 변수의 경우 DRI 기반 안전등급 중 poor 이상 등급을 1, 그 외의 등급을 0으로 정의하였으며, 독립변수의 경우 현장조사를 통해 수집된 교차로 유형, 차로 수, 차로 폭, 추가차로 유무, 차량 진행방향, 불법주정차 유무, 버스정류장 유무, 자전거 차로 유무에 대해 명목형 변수로 설정하였다. 도출된 주행모드별 주행안전성 영 향 요인을 검토하고 향후 자율주행차 시대에 대비하여 선제적으로 개선이 요구되는 도로 시설 특성을 도출하고 도로 운영성 및 효율 성, 안전성 측면의 개선 방향을 제시하였다.
정보통신기술(Information and Communication Technology)과 기존 교통수단의 융복합으로 수소자동차, 자율주행자동차 등과 같은 새로운 교통수단 등장으로 광역 이동과 같은 이동성이 향상될 것으로 기대되고 있다. 또한, 보다 빠른 광역 이동성 확보를 위해 BRT 전용차로 도입에 대한 논의가 계속되고 있으므로 본 연구는 BRT 전용차로 구간에서 자율주행자동차의 혼입률 및 대중교통 전환율에 따른 시나리오를 설정해 서비스수준 분석을 기반으로 잉여차로 발생 가능성을 확인하였다. 더불어, 미래교통량 증가와 자율주행 기술 의 발전이 BRT 전용차로 운영 구간에 미치는 변화를 분석해 도로의 자산가치 산정을 목적으로 하고 있다. 설정한 시나리오에서 도로 가 기능을 발휘할 수 있는 일정한 서비스수준(Level of Service, LOS)를 유지하는 자율주행자동차 혼입률 수준을 파악하였으며, A~F 의 6단계로 구분하여 결과를 도출하였다. 도로의 자산가치 산정방법은 국가회계기준에서 제시하고 있는 토지의 대체적 평가방법 4가 지 방법과 보다 객관성을 확보한 새로운 자산가치 평가방법을 준용하여 도로의 자산가치를 산정하였다. 분석 결과, 간선도로 서비스수 준을 통해 BRT 전용차로를 시행하면서 연속류 구간에서는 자율주행자동차 혼입률이 75%되는 경우 편도 3차로에서 편도 2차로로 1차 로 감소가 이루어져도 현재의 서비스수준을 유지할 수 있으며, 단속류에서는 자율주행자동차의 혼입률이 50%되는 시점에 편도 4차로 에서 편도3차로 1차로 감소 시 동일한 효과를 발휘할 수 있음을 확인하였다. 즉, 연속류 구간에서 자율주행자동차 비율이 75% 및 단 속류 구간에서는 자율주행자동차의 비율이 50%되는 시점에서 1차로에 대한 도로 자산가치가 발생할 수 있음을 알 수 있었다. 이와 같은 잉여차로는 보행약자를 위한 보행 공간 및 자전거도로, 개인형이동장치((Personal Mobility, PM)전용도로, 완충녹지 등의 완전도 로로 활용될 수 있음을 시사하고 있다.
최근, 국토교통부에서 시행한 “국가 보행교통 실태조사”로 인해 보행안전과 보행환경에 대한 중요성이 증가하고 있으며, 전반적으로 대로에서는 보행환경이 양호하나 생활도로에서는 보도가 미설치되거나 보도폭이 협소하여 보행환경이 미흡하고 보행 만족도도 낮은 것으며 생활도로의 약 34%가 유효보도폭 기준을 충족하지 못하고 있다고 조사되었다. 국가 주요 사회간접자본(SOC)인 도로, 교량, 터 널, 공공건물, 환승센터 등에 비하여 상대적으로 보행공간을 대상으로한 정보화 속도가 늦어 정보화 연구개발에 대한 추진이 시급한 실정이다. 이에 정부에서도 국가공간정보정책 기본계획에 따른 국가공간정보정책 시행계획이 확정되어 신산업 기반으로서의 역할과 안전한 시설관리를 위한 디지털 트윈 관련 기술개발 등에 투자를 확대하고, 디지털 트윈 등의 기반 정보인 고정밀 공간정보 생산 등 에 중점적으로 투자하고 있다. 현재 한국건설기술연구원, 서울시, 경기도 등에서 활용하고 있는 조사장비(PES, KRISS)는 도로포장(차 도)에서 상태 모니터링을 진행하고 있으나 이와 같은 장비들은 고가의 장비들로 실질적으로 사용하기에는 어려움이 있다. 또한, 보행 도로에서는 상태 모니터링을 수집할 장비가 없기 때문에, 보행 공간 경사, 노면 상태 등을 측정ㆍ수집하는 방법은 인력에게 의존해왔 다. 또한, 현재 보행자도로에 대한 서비스수준 산정 방식은 한국도로용량편람(2013)의 보행자시설편에서 제공하고 있는 산정 방식으로 도로용량편람에서 제시하는 보행자도로의 분석 방법을 적용하여 서비스수준을 산출할 경우, 차량과 동일한 교통량-속도-밀도 관계에 의존하여 산출하기 때문에 현실적인 보행자도로의 서비스수준을 반영하지 못하고 있는 실정이다. 이러한 문제로 인해 보행공간에 대 한 이용자의 안전 및 편의성에 대한 연구가 미흡한 상황이다. 따라서, 본 연구는 모바일매핑시스템(Mobile Mapping System)과 인공지 능(AI), 무인비행장치(Drone)를 활용한 보행공간 상태 모니터링 시스템 구축 방안을 제시하고자 한다.
UAM 등 신교통수단의 등장으로 인해 고속도로는 경쟁력 제고가 필요한 실정이다. 해외 국가에서는 고속도로의 제한속도를 상향하 고 있으며 국내에서도 고속도로 경쟁력 확보를 위한 방안으로 초고속도로 도입을 고려하고 있다. 따라서 본 연구에서는 초고속도로 도입에 따른 사회적 편익을 분석하고자 하였다. 분석을 위해 교통수요분석 프로그램 TransCAD를 활용하였으며 속도 상향 시나리오별 (140km/h ~ 200km/h) 편익을 도출하였다. 그 결과, 전국 고속도로의 속도를 상향할 때 전국 도로 네트워크의 총편익이 증가하는 것으 로 나타났다. 본 연구는 향후 초고속도로 도입을 위한 정책 기초 자료로 활용할 수 있을 것으로 기대된다.
전 세계적으로 실도로에서의 자율주행차 안전성능을 검증하고 자율주행 시스템 기술의 개발을 위해 다양한 실증을 수행하고 있다. 미국의 경우 캘리포니아, 오하이오, 애리조나 등 다양한 주에서 자율주행차의 실도로 테스트를 진행하고 있으며, 독일의 경우 페가수 스 및 이매진 프로젝트 등을 통해 자율주행 성능 및 협력 운행 테스트를 수행하였다. 그러나, 자율주행차의 주행 성능 측면의 평가에 국한되어 실증이 진행되고 있다는 한계가 존재한다. 실도로 환경에서 자율주행차는 비자율주행차, 보행자 및 자전거 등과 상호작용하 며, 다양한 도로 기하구조에서 주행안전성 저하 문제가 발생할 수 있다. 따라서, 본 연구에서는 혼재교통상황에서 자율주행차의 주행 안전성을 저하시키는 도로 기하구조를 도출하였다. 또한, 캘리포니아 Department of Motor Vehicles (DMV)에서 제시한 자율주행차 관련 사고자료 검토를 통해 유사한 도로 기하구조에서 발생할 수 있는 사고 유형을 검토함으로써 선제적인 대안을 마련하고자 한다. 시뮬 레이션 분석을 위한 자율주행차 거동구현의 경우 real-world automated vehicle data (AVD) 기반 주행행태 분석을 통해 VISSIM 파라미 터를 조정하였다. 위험구간 도출을 위해 평가지표를 선정하고 주행안전성 분석을 수행하였으며, 위험 구간의 도로 기하구조의 특성을 도출하였다. 마지막으로 위험구간의 도로 기하구조와 유사한 구간에서 발생한 실제 자율주행차 관련 사고 보고서를 검토함으로써 본 연구에서 도출된 위험구간의 도로 기하구조에서 발생할 수 있는 잠재적 사고 원인을 제시하였다. 본 연구의 결과를 통해 향후 자율주 행차의 실도로 도입을 위해 선제적인 대책을 마려하는데 기초자료로 활용될 수 있으며, 나아가 자율주행차 안전성 향상을 위한 경고 정보 서비스 개발, 정보 제공 인프라 설치 우선순위, 도로 기하구조 개선 사업에 활용할 수 있을 것으로 기대된다.
교통사고는 인적요인, 도로 기하구조, 교통류, 환경적 요인 등 복합적인 요인에 의해 발생하고 속도는 교통사고와 밀접한 연관성이 있다. 또한, 교통사고는 교통 혼잡도와 관련이 있으며 사고와 실시간 교통상황 간의 상관관계를 통해 사고 발생 개연성을 추정하고 도 로 안전성 분석이 필요하다. 모바일 센서와 통신 기술의 급속한 발전으로 스마트폰 보급률이 증가하였으며 내장된 센서를 기반으로 생성된 차량 주행 데이터 수집이 가능하다. 기술의 발달로 데이터 수집이 쉬워졌음에도 불구하고, 스마트폰을 기반으로 수집된 위험 운전 이벤트를 활용한 도로 위험도 평가에 대한 연구는 부족한 실정이다. 본 연구는 스마트폰 센서 기반의 위험 운전 이벤트 데이터 중 하나인 급감속 위험 운전 이벤트 데이터를 도로 위험도 평가 기법에 활용하는 것을 목적으로 한다. 급감속 위험 운전 이벤트 데이 터는 주행 차량이 3초간 속도를 40km/h 이상 감소하는 위험 이벤트가 발생할 때 시간과 위치를 기록한 자료를 의미한다. 본 연구의 범위는 대한민국 내 인구와 교통량이 많은 지역인 수도권을 대상으로 서울, 경기, 인천을 연결하는 고리 형태의 도로인 수도권제1순환 선을 대상으로 하였다. 먼저, 개별 차량 데이터는 좌표 기반의 내비게이션 데이터로 집계하여 VDS 링크 데이터와 매칭하였다. 다음으 로는 개별 차량의 위험 운전 이벤트 데이터와 차량 검지기의 교통 매개변수를 결합한 새로운 지표를 개발하였다. 또한, 시·공간적 교 통류의 특성을 반영하여 다양한 도로 위험도 평가 방법에 활용하고자 하였다. 마지막으로 위험 운전 지표와 이력 자료를 기반으로 통 계적으로 유의한 안전성능함수를 개발하였으며, 다양한 시간 단위의 집계 수준을 활용하여 도로 구간별 최적의 모형을 제안하였다. 본 연구는 스마트폰 센서를 기반으로 식별한 개별 차량의 위험과 교통류 차원의 위험을 결합하여 새로운 위험 지표를 개발하고 도로 위 험도 평가에 활용한다는 것에 의의가 있다. 결과물은 향후 스마트폰 센서 기반 개별 차량 위험 운전 이벤트 데이터와 교통 조건을 통 합하는 도로 위험도 평가의 기초자료로써 활용될 것으로 기대된다.
자율주행차량을 상용화하기 위한 노력이 계속되고 있으며, 완전 자율주행 교통 환경이 조성되기 전까지 자율주행차량과 일반 차량 이 혼재된 혼합교통류가 형성될 것이라 예상된다. 이러한 혼합교통류에서 자율주행차량과 일반 차량은 주행 행태가 다르므로 기존에 는 발생하지 않았던 사고 위험상황을 유발할 수 있으며, 따라서 자율주행차량의 도입에 따른 사고 위험상황을 사전에 파악하고 이에 대한 안전관리 전략을 마련할 필요가 있다. 이러한 안전관리 전략 수립의 첫 단계로 자율주행차량 도입 시 자율주행차량이 사고위험 상황에 처할 수 있는 취약 구간과 취약 상황을 정의해야 한다. 기존 연구의 경우 자율주행 취약 구간 및 취약 상황 정의를 위해 전문 가 설문 조사 방법을 사용하였으며, 자율주행차량 데이터 구득에 어려움이 있어 주로 시뮬레이션 분석을 진행하였다. 본 연구에서는 더 실질적이고 구체적인 자율주행 취약 구간과 취약 상황을 정의하기 위해 두 가지 출처의 데이터를 활용하였으며, 다양한 방법론을 적용하여 과학적이고 다각적인 분석 결과를 도출하였다. 세종시 자율주행 실증구간에서 수집할 수 있는 자율주행차량 주행 궤적 데이 터를 활용해서는 사고위험 판단 안전 지표를 기준으로 사고 취약 구간 및 상황을 정의하였으며, 캘리포니아 DMV 자율주행차량 사고 데이터를 활용해서 연관규칙 기법과 토픽 모델링을 적용해 자율주행 사고에 영향을 미친 주요 요인들과 요인들 간의 연관성을 분석하 였다. 최종적으로는 세종시 자율주행차량 데이터 분석 결과와 캘리포니아 DMV 사고보고서 결과를 종합하여 종합적인 자율주행 취약 구간 및 상황을 정의하였다. 향후 본 연구에서 정의한 자율주행 취약 구간과 취약 상황 및 본 연구의 방법론을 활용하여 미래 교통 시스템의 안전 관리 전략을 마련할 수 있으며, 도로 운영자와 관리자의 의사결정을 도울 수 있을 것으로 기대한다.
노면 마찰력은 포장 표면과 타이어의 마찰력으로 인해 발생하는 현상으로 높은 노면의 마찰력은 제동 중 차량의 안정성과 조종성을 향상시킨다. 노면 마찰력이 증가함에 따라 교통사고 횟수가 감소하는 것으로 알려져 있으며 습윤 상태의 노면에서 교통사고가 증가하 는 것으로 알려져있다. 따라서 교통사고 발생 억제와 도로 안전의 확보를 위해서는 적정 수준의 노면 마찰력, 특히 습윤 상태의 노면 마찰력을 확보하는 것이 중요하다. 노면 마찰력은 adhesion과 hysteresis로 분류되며 특히 습윤상태 도로에서 hysteresis가 중요한 역 할을 한다. hysteresis는 고무의 변형에 의해 발생하기 때문에 고무 변형에 영향을 미치는 노면 조직 변수를 선정하여 노면 마찰력을 예측하고자 한다. 노면 마찰력은 노면 조직 특성과 밀접한 관련이 있으며, 이에 따라 노면 조직 특성을 나타내는 지수 중 하나인 MTD(Mean Texture Depth)가 노면 마찰력 예측을 위한 인자로 사용되고 있는 실정이다. 하지만 MTD는 노면 조직 깊이만을 평가하 는 인자로 다양한 요소가 결합되어 있는 노면 조직 특성을 모두 설명할 수 없으며, 노면 마찰력 예측을 위해서는 복잡한 노면 조직을 설명할 수 있는 추가 변수의 선정이 요구된다. 본 연구에서는 노면 마찰력의 메커니즘 분석을 토대로 노면 마찰력에 영향을 미치는 노면 조직 특성을 분석하였고, wave-length와 노면 조직의 형태, 노면 조직 깊이가 노면 마찰력에 미치는 영향이 클 것으로 예상하였 다. 이를 검증하기 위해서는 3가지 노면 조직 특성이 노면 마찰력에 미치는 영향에 대한 검토가 요구되나 실제 도로의 노면은 노면 조직이 불규칙하게 형성되어 있어 노면 조직 특성의 개별적 영향을 검토하기 어렵다. 이를 위해서는 선정한 노면 조직 특성의 정량적 형성이 요구되며 3D 프린팅 시편을 제작해 노면 조직을 인위적으로 형성함으로써 실제 도로 노면 조직의 불규칙성을 개선하였다. 노 면 조직 특성을 시편에 반영하기 위해 노면 조직 깊이는 MTD, wave-length는 노출 골재의 개수를 뜻하는 EAN을 변수로 설정하였 다. 또한 EAN(Exposed Aggregate Number)은 노출 골재의 형성이 필수적이므로 골재의 형상을 제어하여 노면 조직의 형태를 시편에 반영하였으며 골재 형상과 노면 마찰력의 통계학적 분석을 위해 형상 지수를 산출하여 분석하였다. 3D 프린팅 시편은 크기에 제한이 있어 좁은 영역에서 측정이 용이한 BPT(British Pendulum Test)를 사용해 노면 마찰력을 측정하였고, 습윤한 노면에서는 수막으로 인해 노면 마찰력이 크게 감소하여 노면 조직의 영향이 커지므로 습윤 상태에서 노면 마찰력을 측정하였다. 측정 데이터를 통한 분석 결과 노면 조직 변수인 MTD가 증가할수록 BPN(wet)이 선형적으로 증가하는 것이 확인되었으며, EAN에 따라서 BPN이 증가했다가 감소하는 경향이 나타났다. 이는 EAN이 과도하게 많아지면 고무가 침투할 공간이 줄어들어 hysteresis가 감소하기 때문으로 사료된 다. 또한 골재 형상에 따라 노면 마찰력의 최댓값과 optuimum EAN의 변화가 있었다. 이는 골재 형상에 따른 고무 침투 부피의 변화 에 의한 것으로 사료된다. 위의 결과를 통해 MTD, EAN, 골재 형상과 BPN(wet)의 관계를 통계학적으로 분석하여 BPN(wet) 예측 모 델을 제안하였다.