검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, effectiveness of seismic retrofitting methods using passive damping devices was investigated through numerical analyses of short-period structures under earthquakes which have short-duration and high-frequency impulse characteristics similar to Geyongju earthquakes. Displacement spectra of elastic systems and ductility demand of inelastic systems were evaluated by increasing viscous or friction damping. The damping devices could reduce responses of the structures with shorter structural period than 0.2s. The earthquakes similar to impulse load did not induce the responses of the structures with longer period than 0.4s, and the effects of the damping devices which generates damping forces proportional to structural responses became insignificant.
        4,000원
        2.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, an acceleration sensor that has optical fibers to measure the inclination and acceleration of a structure through contradictory changes in two-component FBG sensors was examined. The proposed method was to ensure precise measurement through the unification of the deformation rate sensor and the angular displacement sensor. A high sensitivity three-axis accelerometer was designed and prepared using this method. To verify the accuracy of the accelerometer, the change in wavelength according to temperature and tension was tested. Then, the change in wavelength of the prepared accelerometer according to the sensor angle, and that of the sensor according to the change in ambient temperature were measured. According to the test results on the FBG-based vibration sensor that was developed using a high-speed vibrator, the range in measurement was 0.7 g or more, wavelength sensitivity, 2150 pm/g or more, and the change in wavelength change, 9.5 pm/℃.
        4,000원
        3.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        CFD(Computational Fluid Dynamics) analysis was carried out to analysis the air flow characteristics of vertical axis wind turbine system with accelerating device. Geometric arc angle of the accelerating device affects the air flow characteristics in the turbine with the effect of Coanda generated from the curved surface. Air velocity distributions with the device angle variation are compared. Flow velocity increases with the device length, and the accelerating device plays a key role in decreasing the air velocity in the wake flow region. Maximum air velocity variation becomes reduced with the accelerating device, and it is largely affected by the arc angle. These results are expected to be utilized in various ways to determine the shape of accelerating device for wind power generation system.
        4,000원
        5.
        2015.03 구독 인증기관 무료, 개인회원 유료
        In this study, flow characteristic of small vertical-axis wind turbine was performed to analysis the numerical analysis. Blade geometry in the wind turbine is NACA 6512-43, and various degrees of the wind turbine accelerator were adopted. Numerical models are used for the analysis with CFD program of Ansys fluent and RNG k-e turbulence model was used. Rotational speed value of the wind turbine in analysis condition were obtained by the experiment. When the wind turbine accelerator is equipped, exit velocity of wind turbine accelerator tended to increases. Also RPM of wind turbine is increase. And maximum RPM appeared that wind turbine accelerator in degree 60° is equipped.
        4,000원
        6.
        2018.06 KCI 등재 서비스 종료(열람 제한)
        The lifetime of the electrode is one of the most important factors on the stability of the electrode. Since the lifetime of the DSA (Dimensionally stable anode) electrode is long, an accelerated lifetime test is required to reduce the test time. Beacuse there is no basis or standard method for accelerated lifetime testing, many researchers use different methods. Therefore, there is a need for basis and methods for accelerated lifetime testing that other researchers can follow. We designed a reactor system for accelerated lifetime testing and planned specific methods. Reactor system was circulating batch reactor. Reactor volume and cooling water tank were 12.5 L and 100 L, respectively. Electrode size was 2 cm x 3 cm (real electrolysis area, 5 cm2). In order to maintain the harsh conditions, accelerated lifetime test was carried out in a high current density (0.6 A/cm2) and low electrolyte concentration (NaCl, 0.068 mol/L). Maintaining a constant temperature was an important operation parameter for exact accelerated lifetime test. As the accelerated lifetime test progressed, the active component of electrode surface was consumed and desorption occurred. At the point of 5 V rise, corrosion of the surface of the base material(titanium) also started.
        7.
        2014.08 KCI 등재 서비스 종료(열람 제한)
        의료용 선형가속장치는 1952년에 개발된 이후 방사선 치료에 사용되어 왔으며 그 활용도가 더욱 증가하고 있다. 현재는 6 MeV 이상의 광자 에너지를 사용하는 고 에너지 방사선치료가 보편화되어 사용되고 있으나, 광핵반응에 의한 중성자의 생성으로 환자 및 술자에 대한 피폭이 문제가 되고 있다. 이에 본 연구에서는 MCNPX를 사용하여 의료용 선형가속장치에서 발생되는 6~24 MV 광자선의 스펙트럼을 분석하고, 평균에너지 및 텅스텐의 중성자 생성 임계에너지인 7.41 MeV 이상의 광자 개수를 평가하였다. 그 결과 8 MV를 시작으로 24 MV에서는 전체 검출 광자 수에 비해 0.59%의 비율로서 광핵 반응을 일으킬 수 있는 광자수가 증가함을 알 수 있었다.