검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        3.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The use of reclaimed aggregate has been recently increasing with the increase in the amount of waste asphalt concrete. The application of these materials can reduce the properties of the asphalt pavement when compared with the case when recycled aggregate is not used. The objective of this study is to evaluate the performance of the asphalt mixtures with various mix ratios of reclaimed aggregate. METHODS : To measure the performance, the following tests using the mixtures prepared in accordance with the Korea Standards were conducted: Hamburg wheel-tracking test, third-scale model mobile loading simulator test, and dynamic modulus test. RESULTS : The test results of the Hamburg wheel-tracking test indicate that the water resistance was similar in each mixture and the plastic deformation resistance was good in the high-ratio reclaimed aggregate mixture. In the case of the third-scale model mobile loading simulator test, the plastic deformation demonstrated a high resistance in the high-ratio reclaimed aggregate mixture. The results were similar to those of the Hamburg wheel-tracking test; however, the cracking resistance was poor with a high recycled aggregate incorporation ratio. The dynamic modulus test results demonstrated excellent resistance to plastic deformation at a relatively high ratio of reclaimed aggregate admixture. The crack resistance was weakened when a high ratio of reclaimed aggregate mixture was used. CONCLUSIONS: As the reclaimed aggregate content increased, the plastic deformation resistance increased and the crack resistance decreased.
        4,000원
        4.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to analyze the performance life of hot central plant recycling (HCPR) and hot in-place recycling (HIR) pavements applied to the National Highway for the past 20 years and compare it with conventional hot-mix asphalt (HMA) pavement. METHODS: In order to analyze the performance life of recycling asphalt pavements, a comprehensive literature review was conducted to investigate the government law and official system for the use of recycling asphalt pavement in Korea and foreign countries. Next, the application information of using a hot central plant recycling and hot in-place recycling pavements in the national highway is collected from the database of pavement management system (PMS) and then their field condition is visually surveyed. Finally, the performance life of recycling asphalt pavements in the national highway is analyzed and compared with conventional hot-mix asphalt pavement. RESULTS: Institutions are encouraging the promotion of using recycled asphalt pavement through various legal systems in Korea as well as abroad. Based on analysis results for the average performance life of hot central plant recycling pavement applied to the national highway, the average performance life is estimated to be 10.2 years. However, the average performance life of in-place recycling pavement is estimated to be 6.5 years. However, it is expected to increase performance life after the HIR construction system is modified. CONCLUSIONS : Based on the limited data analysis of the performance life of recycled asphalt pavements, HCPR shows similar performance life to conventional asphalt pavement but HIR shows shorter performance life than conventional asphalt pavement. However, it is noted that all performance life data is very limited and it should be monitored and analyzed further.
        4,500원
        5.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The national highways and expressways in Korea constitute a total length of 17,951 km. Of this total length of pavement, the asphalt pavement has significantly deteriorated, having been in service for over 10 years. Currently, hot in-place recycling (HIR) is used as the rehabilitation method for the distressed asphalt pavement. The deteriorated pavement becomes over-heated, however, owing to uncontrolled heating capacity during the pre-heating process of HIR in the field. METHODS: In order to determine the appropriate heating method and capacity of the pre-heater at the HIR process, the heating temperature of asphalt pavement is numerically simulated with the finite element software ABAQUS. Furthermore, the heating transfer effects are simulated in order to determine the inner temperature as a function of the heating system (IR and wire). This temperature is ascertained at 300 ℃, 400℃, 500℃, 600℃, 700°℃, and 800℃ from a slab asphalt specimen prepared in the laboratory. The inner temperature of this specimen is measured at the surface and five different depths (1 cm, 2 cm, 3 cm, 4 cm, and 5 cm) by using a data logger. RESULTS: The numerical simulation results of the asphalt pavement heating temperature indicate that this temperature is extremely sensitive to increases in the heating temperature. Moreover, after 10 min of heating, the pavement temperature is 36%~38% and 8%~10% of the target temperature at depths of 25 mm and 50 mm, respectively, from the surface. Therefore, in order to achieve the target temperature at a depth of 50 mm in the slab asphalt specimen, greater heating is required of the IR system compared to that of the gas. CONCLUSIONS : Numerical simulation, via the finite element method, can be readily used to analyze the appropriate heating method and theoretical basis of the HIR method. The IR system would provide the best heating method and capacity of HIR heating processes in the field.
        4,000원