검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 레이더 관측 영역 내에 강수 에코(echo)가 없는 지역을 비강수 정보라고 정의하고 자료 동화에 활용하였다. 비강수 정보는 레이더로 관측할 수 있는 최대 영역 내에서 강수에 의한 에코가 나타나지 않고 레이더에서 관측할 수 없을 정도로 약한 강수나 구름 입자가 있거나, 강수 자체가 없다는 것을 의미한다. 기존의 레이더 자료를 동 화한 연구가 강수에 의한 반사도와 시선속도를 동화하여 모델 내의 강수를 만들어내는 것에 초점을 두었다면, 본 연구 에서는 에코가 없다는 것도 하나의 정보로 고려하고 이를 동화함으로써 모델 내에서 잘못 예측한 강수를 억제하였다. 비강수 정보를 자료동화에 적용시키기 위해 레이더 비강수 정보를 수상체와 상대습도로 변환하는 관측 연산자를 제시 하고 이를 Weather Research and Forecasting (WRF) 모델의 자료동화 시스템인 WRF Data Assimilation system (WRFDA)에 적용하였다. 또한 비강수 정보를 효과적으로 활용하기 위한 레이더 자료의 처리 방법을 제시하였다. 비강 수 정보가 모델 내에서 잘못 예측한 강수를 억제할 수 있는지 확인하기 위해 단일 관측실험을 수행하였으며 비강수 정 보가 수상체와 습도 그리고 기온을 낮춤으로써 대류가 억제될 수 있는 환경을 만들었다. 비강수 정보의 동화 효과를 실제 사례에 적용한 2013년 7월 23일 대류 사례 실험을 통해 9시간 예측을 수행하여 결과를 분석하였다. 레이더 비강 수 정보를 추가로 동화한 실험이 비강수 정보를 제외한 실험보다 Fractional Skill Score (FSS)가 증가하고 False Alarm Ratio (FAR)는 감소하여 모델의 강수 예측성을 향상시켰다.
        5,700원
        2.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        현재 최고 수준의 대순환 모형에서 북동아시아 여름몬순 강도의 계절예측 능력은 낮으나 북서태평양 아열대 고기압 강도의 예측률은 상대적으로 높다. 북서태평양 아열대 고기압은 북서태평양 지역 및 동아시아 지역에서 가장 주된 기후 변동성이다. 본 연구에서 NCEP 계절예측시스템에서 예측된 북서태평양 아열대 고기압의 예측성에 대해 논의될 것이다. 한편, 북동아시아 여름몬순의 경년변동성은 북서태평양 아열대 고기압과 높은 상관성을 가지고 있다. 본 연구에서는 이 관계에 근거하여, NCEP 계절예측시스템과 정준상관분석을 이용한 계절예측 모형을 제안하고 그 예측률을 평가하였다. 이 방법은 북동아시아 지역 여름철 강수량 편차에 대한 계절예측에 있어 통계적으로 유의한 예측성능을 제공한다.
        4,000원
        3.
        2007.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        강수는 다양한 대기 변수들의 영향으로 나타나기 때문에 비선형성이 매우 강하다. 따라서 역학 모형을 통해 예측된 강수의 보정은 비선형 모형인 인공 신경망 등을 통해 가능할 것이지만, 인공 신경망의 경우 초기 가중치 선택, 지역 최소화 문제, 뉴런의 수 결정 등의 문제로 인한 한계가 있다. 그러므로 본 연구에서는 가장 보편적으로 사용되는 다중 선형 회귀 모형을 이용하여 CGCM에 의해 모사된 강수를 보정하였으며, 예측성을 살펴보았다. 이를 위하여 우선 PNU/CME 접합 대순환 모형(Coupled General Circulation model, CGCM)(박혜선과 안중배, 2004)을 이용하여 1979년부터 2005년까지 매해 4월부터 8월까지 5개월간 앙상블 적분을 하였다. 적분 결과 중 한반도를 포함한 동북아시아 지역(110˚E-145˚E, 25˚N-55˚N)의 여름철인 6월(리드 2), 7월(리드 3), 8월(리드 4) 및 여름철 평균인 JJA(from June to August) 기간의 PNU/CME CGCM에 의해 모사된 강수를 보정하기 위해 다중 선형 회귀(Multiple Linear Regression, MLR)를 이용하였다. PNU/CME 접합 대순환 모형의 결과 중 강수, 500 hPa 연직 속도, 200 hPa 발산장, 지상 기온 등의 예측 인자와 관측 강수와의 선형적인 관계를 이용하여 MLR 모형을 구축하였다. 그리고 교차 검증(cross- validation)을 수행하여 PNU/CME 접합 대순환 모형의 결과와 교차 검증 결과를 비교하였다. 상관계수, 적중률 (hit rate), 오보율(false alarm rate) 그리고 Heidke 기술 점수(Heidke skill score) 등을 살펴본 바, 보정하지 않은 모형의 결과에 비해 MLR 모형을 이용하여 보정한 결과의 강수에 대한 예측성이 뛰어난 것을 알 수 있었다.
        4,500원
        4.
        2002.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        경험적 직교함수(EOF)분석법과 다중회귀법에 기초하여 지연상관된 광역규모 예측인자로부터 3개월 이전에 계절 강수량을 예측할 수 있는 슈퍼앙상블 모델이 개발되었다. 이 모델의 예측성이 교차검증법에 의해 평가되었다. 관측값과 예측값사이의 상관계수는 봄철에 0.73, 여름철에 0.61, 가을철에 0.69, 겨울철에 0.75로 나타났다. 이러한 값은 유의수준 α=0.00에서 유의한 값이다. 수퍼 앙상블 방법의 범주형 예측성이 3개 범주로 나누어진 사례에 대해서 평가되었다. 3개 범주는 계절 누적강수량의 상위 33.3%를 과우해, 하위 33.3%를 소우해, 그 나머지를 평년해로 구분하였다. 범주형 예측의 적중률은 계절에 따라 42%에서 74%로 나타났다.
        4,000원
        5.
        2018.11 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 미급수지역의 주요 수원인 지하수의 수위 변동 상황을 기반으로 한 미급수지역 가뭄 예보 기법 개발을 목적으로 하였다. 이를 위해 지역화된 표준지하수지수(SGI)와 표준강수지수들(SPIs)의 상관관계를 분석하였다. 관측 지하수위로부터 산정된 SGI의 자기회귀 특성 및 지속기간별 SPI와 SGI의 상관관계를 동시에 고려할 수 있는 NARX (nonlinear autoregressive exogenous model) 인공신경망 모형을 이용하여 지역별 예측모형을 구축하였다. 학습기간 동안 관측 SGI와 모델 출력 SGI의 상관계수는 0.7 이상인 곳이 전체 167개 지역별 모형 중 146개(87%)로 상관성이 높은 것으로 분석되었다. 적용기간에 대해서는 평균제곱근오차와 상관계수로 모형을 평가하였다. 본 연구를 통해 기상청에서 제공하는 59 개 관측소별 강수량 전망 값으로부터 산정된 지속기간별 SPI와 관측된 지하수위를 이용한 지역별 SGI 전망이 가능하도록 하였으며, 미급수지역의 가뭄 예‧경보를 위한 기초자료로 활용이 가능토록 하였다.
        6.
        2017.03 KCI 등재 서비스 종료(열람 제한)
        A statistical forecast model for early spring (March and April) precipitation over South Korea is developed by using multiple linear regression method. Predictors are selected among the forty five large-scale atmospheric and oceanic indices. Because the model is meant to use for real-time forecast, the predictors are chosen from the indices that have statistically significant lag correlation with observed early spring precipitation. The selected predictors of early spring precipitation are North Pacific Pattern with 6-month lead, Siberian High Index with 5-month lead and Indian Ocean Basin Mode Index with 3-month lead from March, and they are statistically independent. We applied leave-two-out cross validation. According to the regression map between these indices and synoptic circulations around Korean peninsula, these indices represent the induction of early spring rainfall by controlling East Asian jet and low level moisture flux. The regression coefficients for each training period show that three indices affects evenly at every forecast year and they show stable variability, indicating that the influence of each index does not depend on training period. The developed statistical model significantly predicted early spring precipitation over South Korea (r=0.63, p-value<0.01). Also it marks 61% of hit rate according to the three-category deterministic forecast.
        7.
        2015.02 KCI 등재 서비스 종료(열람 제한)
        최근 기후 변화에 따른 게릴라성 호우에 의한 전 세계 도심 속 산지 지역에서 토석류의 발생 빈도수가 증가하고 있으며, 이 결과 더 많은 인명피해와 주요 시설물 파괴 등의 피해가 사회적 큰 문제로 대두되고 있다. 현재까지는 도심지역 재해 관리 및 피난 계획 수립 시, 토석류 범람은 별도로 취급되어 피난 권고 시스템이 구축되고 있으나 피난계획 수립 시, 재해 발생 가능성을 고려한 여러 재해를 기반으로 통합적인 대책 수립이 필요하며 향후, 현재보다 더 큰 강우가 발생 할 가능성이 굉장히 크며 이에 대한 대책 수립의 중요성 또한 강조되고 있다. 본 연구에서는 실제 지역에서의 토석류의 유동형태를 파악하고, 외력조건으로 DAD 분석을 통해 가능최대 강우량과 유출량을 산정하며 주거지 지역에서의 토석류 영향범위 파악을 목적으로 한다. 실제 지역에서의 토석류 특성을 분석하기 위해 토석류 흐름 패턴, 퇴적 깊이, 도달속도, 발생된 토사량 및 토석류 이동거리를 평가했다. DAD 해석 결과, 피크 시간 강우량은 국지성 호우에 의해 약 135 mm, 24시간 누적 최대강우량은 태풍에 의한 호우로 약 544 mm로 조사 되었다. 또한 토석류에 의한 영향범위를 파악 하였다.
        8.
        2012.07 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 지상의 관측 자료와 광역의 정보를 제공하는 수치 예보 모형 자료 및 인공위성 자료를 이용하고 자료와 강수예측치의 물리적 상관 특성을 나타내기 위하여 자료 사이의 비선형 거동을 잘 나타내는 신경망 모형에 적용시켜 단시간 강수 예측을 수행하였다. 이를 위하여 서울지점에 대하여 현재로부터 3시간, 6시간, 9시간, 12시간의 선행시간을 가지는 인공위성 자료(MTSAT-1R) 및 수치 예보 모형 자료(RDAPS, Regional Data Assimilation and Prediction System)와 실시간 전송되는 자동 기상 관측 시스템(AWS, Automatic Weather System)의 관측치를 신경망 모형의 입력 자료로 하여 3시간, 6시간, 9시간, 12시간의 선행시간을 가지는 자료로 강수를 예측 할 수 있는 강수 예측 모형을 개발하였다. 장마와 태풍과 같이 전선형강수와 선풍형강수 등 강수 양상의 차이를 고려하기 위하여 6월, 7월과 8월, 9월 자료를 구분하여 신경망을 구축하였으며, 자료가용성에 기초하여 2006년에서 2008년 기간 동안에 대하여 모형을 학습하고 2009년에 대하여 모형의 적용성을 검증한 결과, 단시간 강수예측에 대한 모형의 적용 가능성을 보여주었으나 다양한 광역 자료와 인공신경망을 사용함에도 불구하고 단시간 강수예측의 정량적 정도향상을 위한 여지가 많음을 보여준다.
        9.
        2002.10 KCI 등재 서비스 종료(열람 제한)
        시계열의 예측은 통상 추계학적 모형에 의해 수행하여 왔다. 그러나 본 연구에서는 퍼지 개념을 이용한 퍼지 시계열 모형에 의해 강수량 예측을 수행하였다. 기존에 제안된 퍼지 시계열 모형을 이용하여 예측을 수행하고, 예측 능력을 향상시키기 위하여 퍼지 시계열과 뉴로-퍼지 시스템을 연계한 새로운 방법론을 제안하여 상호 비교ㆍ분석하였다. 이를 위하여 미국 일리노이주의 강수량 시계열 예측에 적용하였으며, 예측 결과, 기존의 모형보다 본 연구에서 제안한 방법론의
        10.
        2002.10 KCI 등재 서비스 종료(열람 제한)
        대기에서의 물순환은 기후시스템이라는 커다란 공간 안에서 다양한 인자들의 상호작용을 통하여 이루어진다. 즉, 어떠한 기후 현상도 그 자체적으로 발생할 수는 없다. 따라서, 많은 연구자들은 영향인자들의 분석을 통하여 기후 변화를 이해하고자 노력하여 왔다. 본 연구에서는 다양한 인자에 의하여 영향을 받아 발생하는 강수량의 예측을 위하여 실제 세계의 근사적이고 부정확한 성질을 표현하는데 효과적인 퍼지 개념을 이용하였다. 예측을 위하여 적용한 모형은 크게 뉴로-