PURPOSES : In this study, the thermal conductivity properties and mechanical performance of a thermally conductive asphalt mixture that can be applied to increase the efficiency of deicing asphalt pavements are evaluated.
METHODS : Graphite powder and carbon fiber, which are inexpensive carbon materials, were added to the asphalt mixture to its conductivity. To determine the optimal mixing ratio of the carbon materials, the dispersibility, thermal conductivity, and performance of the conductive asphalt mixture were evaluated. The performance of the mixture was evaluated in terms of its volume characteristics, Marshall stability, dynamic modulus, indirect tensile strength (IDT), and wheel-tracking tests.
RESULTS : The thermal conductivity of the asphalt mixture containing 2% graphite is 1.81 W/mK, which is approximately twice (0.94 W/mK) that of a general asphalt mixture. Meanwhile, the graphite-added asphalt mixture indicates a much higher temperature increase rate than the general asphalt mixture, and its surface temperature after 60 min is 7.5 ℃ higher. In addition, it reaches 0 ℃ from -10 ℃ at a rate 1.5 times higher than that required by the general asphalt mixture. When both 2% graphite and 1% carbon fiber are added, the thermal conductivity improves to 2.03 W/mK, and the conductivity is similar at all locations of the slab specimen location, which indicates no dispersibility issue. The results of the mechanical performance evaluation shows that the higher the ratio of the carbon material, the lower is the dynamic modulus and IDT at 20 ℃, which decreases the crack resistance. Meanwhile, the results of the Hamburg wheel-tracking test at 50 ℃ show an improvement in the permanent deformation resistance.
CONCLUSIONS : The results of the conductivity and performance evaluation show that the optimal ratio is the combination of 2% graphite and 0.5% carbon fiber. This suggests that the conductive asphalt mixture incorporated with carbon materials can efficiently transfer heat generated from the heating layer at the bottom of the pavement to the pavement surface.
Equipment used for ships operating in the polar regions, such as icebreakers, should consider countermeasures against freezing. This study performed a structural design that prevents freezing and tolerates thermal stress and wind pressure of the air vent louver heating blades. As boundary conditions for performing the analysis, analysis was performed when the flow rates at the inlet end were 10m/s, 20m/s 30m/s, 40m/s, and 50m/s. As a result of the analysis, if the CNT heating element can maintain the heating performance of 200°C, the blade can maintain the room temperature state except for the end of about 40mm. There are pressure drop between the front and rear of the air vent louver. It can be seen that the allowable wind speed varies depending on the design criteria. As a results, it is required to select an optimal heating temperature to prevent condensation of a blade, optimize the generation of compressive stress by thermal expansion, and trade off the wind pressure and thermal stress according to wind speed.
매년 도로면 결빙으로 인한 교통 사고량이 증가를 하고 있다. 따라서 결빙으로 인한 사고를 미연에 방지하고자 다양한 결빙방지기술에 대한 연구가 활발히 진행되고 있다. 이에 본 연구에서는 도로면 결빙방지를 위해 Multi-wall carbon nanotube(MWCNT)를 이용하여 결빙방지 효과를 살펴보았다. 실험에 사용된 실험체는 도로공사 표준시방서의 포장콘크리트 배합 비에 따라 500*150*50mm의 크기로 제작된 콘크리트 슬래브에 100*100*50mm크기의 MWCNT 발열체를 삽입하여 제작하였다. 총 제작된 실험체는 MWCNT를 콘크리트 슬래브의 중앙에 1개 설치한 경우와 200mm 간격으로 설치한 경우, 각각 3개씩, 총 6개를 제작하여 실내실험을 수행하였다. 실내실험은 영하 10°C의 냉동챔버에서 발열체의 온도를 60°C로 유지하며 120분 동안 실시하였다 그림 1은 MWCNT를 1개 장착한 경우로써 120분이 경과 후 MWCNT로부터 77mm까지 0°C(상온)로 나타났다. 그림 2는 MWCNT를 200mm 간격으로 2개 장착한 경우로써 120분이 경과 후 MWCNT 설치한 안쪽의 모든 표면에서 상온으로 나타나는 것을 확인할 수 있었다. 이는 2개 장착한 경우 발열체 사이간의 열 중첩 효과로 인한 온도 상승효과와 유효발열거리(표면온도가 0°C이상으로 나타났을 때의 거리)가 증가함을 확인할 수 있었다.
This study is based on the screen printing method with heat resistant thin film as base material and development for expansion is proceeding. Therefore, it is convenient to be applicable to the installation and it will be possible to reduce the cost compared with the existing construction such as heat trace by 50% or more. As a result, it is possible to develop and commercialize the market for Polar ship, shipbuilding and offshore plants as it is possible to secure CNT(Carbon Nano Tube) based surface heating element and heating paste composition technology as a heating element material at a cryogenic temperature. It is expected that the efficiency will be great when this method is applied to other industries.
PURPOSES : This paper aims to develop a road pavement de-icing system using carbon sheet to replace the older snow de-icing method. Carbon sheet is a light and high-strength metal. Hence, various bodies of research for its applications in many industries have progressed. METHODS : The experiment was conducted in a laboratory. The carbon sheet supplied voltage through a power supply system, and produced heat transfers to the concrete surface. Various factors, such as pavement material, carbon sheet width, penetration depth, and freezingthawing resistance, were considered in the conducted experiments to confirm the heating transfer efficiency of the carbon sheet. RESULTS : The carbon sheet used was a conductor. Therefore, it produced heat if voltage was supplied. The exposed carbon sheet on the atmosphere did not affect the carbon sheet width when it provided constant voltage. However, the sheet showed different heating behaviors by width change when the carbon sheet penetrated into the concrete. Moreover, the freezing-thawing resistance was decreased by the carbon sheet with increasing width. CONCLUSIONS : The experiments confirmed the possibility of developing a road snow melting system using a carbon sheet. The antiicing system using the carbon sheet to replace the traditional anti-icing system has disadvantages of environmental pollution risk and electric leakage. The pavement also improved its toughness resistance. The utilization value will be very high in the future if carbon sheet heat loss can be minimized and durability is improved.
PURPOSES : The purpose of this study is to develop a deicing pavement system using carbon fiber or graphite with high electrical conductivity and thermal conductivity.
METHODS: Based on literature reviews, in general, conventional concrete does not exhibit electrical and thermal conductivity. In order to achieve a new physical property, experiments were conducted by adding graphite and carbon fiber to a mortar specimen.
RESULTS: The result of the laboratory experiment indicates that the addition of graphite can significantly reduce the compressive strength and improve the thermal conductivity of concrete. In the case of carbon fiber, however, the compressive strength of the concrete is slightly increased, whereas, the thermal conductivity is slightly decreased against the plain mortar irrespective of the length of the carbon fiber. In addition, a mixture of the graphite and carbon fiber can greatly improve the degree of heating test.
CONCLUSIONS : Various properties of cement mortar change with the use of carbon fiber or graphite. To enhance the conductivity of concrete for deicing during winter, both carbon fiber and graphite are required to be used simultaneously.
최근 지구온난화로 인한 잇따른 기상이변 현상으로 인하여, 겨울철 폭설과 한파가 빈번하게 발생하고 있다. 이로 인한 도로의 결빙과 보행자의 낙상사고의 비율이 매년 증가하는 경향을 보이고 있으며, 도로 에 쌓인 눈 또는 도로표면에 두껍고 얇게 형성된 빙판은 일시적·장기적인 교통체증 및 교통사고를 유발하 는 직·간접적인 원인이 되고 있다. 이는 차량 운전자 또는 보행자에게 도로 서비스 이용에 대한 불편함을 유발하며, 안전을 위협하고 있다. 이러한 측면에서, 결빙도로의 제설 및 융설 시스템에 관한 연구와 개발 은 불가피하며, 이로써 창출되는 사회적·경제적으로 발생하는 손실에 대한 예방과, 비용 절감에 대한 효 과를 기대할 수 있다. <그림 1>은 실제 현장에서의 융설시스템이 적용된 도로의 사례를 나타내고 있다.
The snow melting system by electric heating wires which is adopted in this research is a part of road facilities to keep surface temperature of the road higher than freezing point of water for melting the snow accumulated on it. The electric heating wires are buried under paved road at a certain depth and operated automatically and manually. Design theory, amount of heating, and installation standard vary according to economic situation, weather condition, installation place and each country applying the system. A main purpose of this study is figuring out the appropriate range of required heat capacity and installation depth and pitch for solving snowdrifts and freezing problems with minimum electric power consumption. This study was performed under the ambient air temperature(-2℃, -5℃), the pitches of the electric heating wires(200 mm, 300 mm), heating value(250 W/m2, 300 W/m2, 350 W/m2).