검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 124

        1.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper delves into the standard system for selecting aviation tools. Generally, standards are seen as foundational and fundamental. However, in actual practice, there are often instances where a thorough differentiation of the standard unit system isn't properly executed, resulting in product defects in certain companies. Therefore, through the insights gathered in this study, we aim to reaffirm the basic principles and move forward with the objective of manufacturing products of impeccable quality in accordance with future quality improvement policies. Ultimately, we aspire for K-Defense to emerge as a prominent leader in the global market.
        4,000원
        2.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Friction stir spot welding (FSSW) is a solid-state joining process and a rapidly growing dissimilar material welding technology for joining metallic alloys in the automotive industry. Welding tool shape and process conditions must be appropriately controlled to obtain high bonding characteristics. In this study, FSSW is performed on dissimilar materials AA5052-H32 aluminum alloy sheet and SPRC440 steel sheet, and the influence of the shape of joining tool and tool insertion depth during joining is investigated. A new intermetallic compound is produced at the aluminum and steel sheets joint. When the insertion depth of the tool is insufficient, the intermetallic compound between the two sheets did not form uniformly. As the insertion depth increased, the intermetallic compound layer become uniform and continuous. The joint specimen shows higher values of tensile shear load as the diameter and insertion depth of the tool increase. This shows that the uniform formation of the intermetallic compound strengthens the bonding force between the joining specimens and increases the tensile shear load.
        4,000원
        5.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Injection molding is a process of shaping resin materials by heating them to a temperature above their melting point and then using a mold. The resin material is injected into and cooled within the mold cavity, solidifying into the desired shape. The core and cavity components that make up the mold cavity are crucial elements for the precision molding in injection molding. In the case of precision mold production, the application of 5-axis machining technology is required to ensure high machining quality for complex shapes, and among these factors, the tool angle is a critical machining condition that determines the surface roughness of the workpiece. In this study, we aim to measure the surface roughness of the machined surface of KP4A specimens during machining processes with variations in the tool angle and analyze the correlation between the tool angle and surface roughness.
        4,000원
        7.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Tungsten carbide is widely used in carbide tools. However, its production process generates a significant number of end-of-life products and by-products. Therefore, it is necessary to develop efficient recycling methods and investigate the remanufacturing of tungsten carbide using recycled materials. Herein, we have recovered 99.9% of the tungsten in cemented carbide hard scrap as tungsten oxide via an alkali leaching process. Subsequently, using the recovered tungsten oxide as a starting material, tungsten carbide has been produced by employing a self-propagating high-temperature synthesis (SHS) method. SHS is advantageous as it reduces the reaction time and is energy-efficient. Tungsten carbide with a carbon content of 6.18 wt % and a particle size of 116 nm has been successfully synthesized by optimizing the SHS process parameters, pulverization, and mixing. In this study, a series of processes for the highefficiency recycling and quality improvement of tungsten-based materials have been developed.
        4,000원
        8.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        SiAlON-based ceramics are a type of oxynitride ceramics, which can be used as cutting tools for heatresistant super alloys (HRSAs). These ceramics are derived from Si3N4 ceramics. SiAlON can be densified using gaspressure reactive sintering from mixtures of oxides and nitrides. In this study, we prepare an α-/β-SiAlON ceramic composite with a composition of Yb0.03Y0.10Si10.6Al1.4O1.0N15.0. The structure and mechanical/thermal properties of the densified SiAlON specimen are characterized and compared with those of a commercial SiAlON cutting tool. By observing the crystallographic structures and microstructures, the constituent phases of each SiAlON ceramic, such as α- SiAlON, β-SiAlON, and intergranular phases, are identified. By evaluating the mechanical and thermal properties, the contribution of the constituent phases to these properties is discussed as well.
        4,000원
        11.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With the spread of smart manufacturing, one of the key topics of the 4th industrial revolution, manufacturing systems are moving beyond automation to smartization using artificial intelligence. In particular, in the existing automatic machining, a number of machining defects and non-processing occur due to tool damage or severe wear, resulting in a decrease in productivity and an increase in quality defect rates. Therefore, it is important to measure and predict tool life. In this paper, v-ASVR (v-Asymmetric Support Vector Regression), which considers the asymmetry of є-tube and the asymmetry of penalties for data out of є-tube, was proposed and applied to the tool wear prediction problem. In the case of tool wear, if the predicted value of the tool wear amount is smaller than the actual value (under-estimation), product failure may occur due to tool damage or wear. Therefore, it can be said that v-ASVR is suitable because it is necessary to overestimate. It is shown that even when adjusting the asymmetry of є-tube and the asymmetry of penalties for data out of є-tube, the ratio of the number of data belonging to є-tube can be adjusted with v. Experiments are performed to compare the accuracy of various kernel functions such as linear, polynomial. RBF (radialbasis function), sigmoid, The best result isthe use of the RBF kernel in all cases
        4,000원
        15.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the development of advanced ceramic tools, material improvements and design freedom are critical in improving tool performance. However, in the die press molding method, many factors limit tool design and make it difficult to develop innovative advanced tools. Ceramic 3D printing facilitates the production of prototype samples for advanced tool development and the creation of complex tooling products. Furthermore, it is possible to respond to mass production requirements by reflecting the needs of the tool industry, which can be characterized by small quantities of various products. However, many problems remain in ensuring the reliability of ceramic tools for industrial use. In this study, alumina inserts, a representative ceramic tool, was manufactured using the digital light process (DLP), a 3D printing method. Alumina inserts prepared by 3D printing are pressurelessly sintered under the same conditions as coupon-type specimens prepared by press molding. After sintering, a hot isostatic pressing (HIP) treatment is performed to investigate the effects of relative density and microstructure changes on hardness and fracture toughness. Alumina inserts prepared by 3D printing show lower relative densities than coupon specimens prepared by powder molding but indicate similar hardness and higher fracture toughness values.
        4,000원
        1 2 3 4 5