PURPOSES : In this study, a method to use magnesium phosphate ceramic (MPC) concrete for the surface maintenance of airport pavements with jointed concrete is developed.
METHODS : To investigate the application of a material incorporated with MPC for the surface maintenance of airport pavements with jointed concrete, structures with various cross-sections and thicknesses were constructed. The cross-section of the structure was modeled for the surface maintenance of four types of pavements and typical pavement construction processes, such as cutting, cleaning, production and casting, finishing, hardening, and joint reinstallation. Subsequently, the hours required for each process was determined.
RESULTS : The MPC concrete used for the surface maintenance of airport pavements with jointed concrete demonstrate excellent performance. The MPC concrete indicates a compressive strength exceeding 25 MPa for 2 h, and its hydration heat is 52.9 ℃~61.2 ℃. Meanwhile, the crushing and cleaning performed during the production and casting of the MPC require a significant amount of time. Specifically, for a partial repair process, a total of 6 h is sufficient under traffic control, although this duration is inadequate for a complete repair process.
CONCLUSIONS : MPC concrete is advantageous for the surface maintenance of airport pavements with jointed concrete. In fact, MPC concrete can be sufficiently constructed using existing concrete maintenance equipment, and partial repair works spanning a cross-sectional area of 11 m2 can be completed in 1 d. In addition, if the crushing and cleaning are performed separately from production and construction, then repair work using MPC concrete can be performed at a larger scale.
PURPOSES : Almost every design method for airport concrete pavements considers only traffic loading and not environmental loading. This study proposes a mechanistic design method for airport concrete pavements, that considers both environmental and traffic loading simultaneously. METHODS: First, the environmental loading of concrete pavements in Korean airports was quantified. FEAFAA, a finite element analysis program for airport pavements, was used to calculate the maximum tensile stress (MTS) of the slab, caused by both environmental and traffic loadings. The factors that influence the MTS were identified via sensitivity analysis, and an MTS prediction model was developed using the statistical analysis program SPSS. The ratio of MTS to the tensile strength of slab was calculated using the prediction model. The fatigue model under the AC 150/5320-6E and AC 150/5320-6F standards of the FAA was corrected to make it suitable for the predicted stress-strength ratio.
RESULTS : The MTS prediction model and corrected fatigue model were used to redesign the slab thickness and joint spacing of airport concrete pavements originally designed using the AC 150/5320-6D standard, which empirically considers traffic loading only. As a result, different slab thicknesses and joint spacings were redesigned with consideration for environmental loading, specifically the weather conditions of airports. .
CONCLUSIONS: The slab thickness and joint spacing can be mechanistically designed at the same time, whereas previously, only the slab thickness was designed, and the joint spacing was determined empirically.
PURPOSES : The performance of pavements is decreased by reduced bearing capacity, deterioration, and distress due to complex loading conditions such as traffic and environmental loads. Therefore, the proper maintenance of pavements must be performed, and accurate evaluation of pavement conditions is essential. In order to improve the accuracy of the heavy weight deflectometer (HWD), which is a nondestructive evaluation method, the correlation between HWD test results and temperature factors were analyzed in this study.
METHODS : The HWD test was conducted five times for one day on airport concrete pavement, and the ambient temperature, surface temperature, and slab internal temperature were collected. Since the slab internal temperature was nonlinear, it was replaced by the equivalent linear temperature difference (ELTD). The correlation between the HWD test results and each temperature factor was analyzed by the coefficient of correlation and coefficient of determination.
RESULTSAND: The deflection of the slab center, mid edge, and corner, and impulse stiffness modulus (ISM) showed significantly high correlation with each temperature factor, especially the ELTD. However, the load transfer Efficiency (LTE) had very low correlation with the temperature factors. CONCLUSIONS : It is necessary to analyze the effect of aggregate interlocking on LTE according to the overall temperature changes in slabs by conducting seasonal HWD tests. It is also necessary to confirm the effect of seasonal temperature changes on deflection and ISM.
PURPOSES : Previously, airport concrete pavement was designed using only aircraft gear loading without consideration of environmental loading. In this study, a multiple-regression model was developed to predict maximum tensile stress of airport concrete pavement based on finite element analysis using both environmental and B777 aircraft gear loadings.
METHODS: A finite element model of airport concrete pavement and B777 aircraft main gears were fabricated to perform finite element analysis. The geometric shape of the pavement, material properties of the layers, and the loading conditions were used as input parameters for the finite element model. The sensitivity of maximum tensile stress of a concrete slab according to the variation in each input parameter was investigated by setting the ranges of the input parameters and performing finite element analysis. Based on the sensitivity analysis results, influential factors affecting the maximum tensile stress were found to be used as independent variables of the multi regression model. The maximum tensile stresses predicted by both the multiple regression model and finite element model were compared to verify the validity of the model developed in this study.
RESULTS: As a result of the finite element analysis, it was determined that the maximum tensile stress developed at the bottom of the slab edge where gear loading was applied in the case that environmental loading was small. In contrast, the maximum tensile stress developed at the top of the slab center situated between the main gears in the case that the environmental loading got larger. As a result of the sensitivity analysis and multiple regression analysis, a maximum tensile stress prediction model was developed. The independent variables used included the joint spacing, slab thickness, the equivalent linear temperature difference between the top and bottom of the slab, the maximum take-off weight of a B777 aircraft, and the composite modulus of the subgrade reaction. The model was validated by comparing the predicted maximum tensile stress to the result of the finite element analysis.
CONCLUSIONS : The research shown in this paper can be utilized as a precedent study for airport concrete pavement design using environmental and aircraft gear loadings simultaneously.
PURPOSES : The purpose of this study is to analyze the magnitude of shoving of asphalt pavement by junction type between airport concrete and asphalt pavements, and to suggest a junction type to reduce shoving.
METHODS : The actual pavement junction of a domestic airport, which is called airport “A”was modified by placing the bottom of the buried slab on the top surface of the subbase. A finite element model was developed that simulated three junction types: a standard section of junction proposed by the FAA (Federal Aviation Administration), an actual section of junction from airport “A”and a modified section of junction from airport“ A”. The vertical displacement of the asphalt surface caused by the horizontal displacement of the concrete pavement was investigated in the three types of junction.
RESULTS: A vertical displacement of approximately 13 mm occurred for the FAA standard section under horizontal pushing of 100 mm, and a vertical displacement of approximately 55 mm occurred for the actual section of airport “A”under the same level of pushing. On the other hand, for the modified section from airport“ A”a vertical displacement of approximately 17 mm occurred under the same level of pushing, which is slightly larger than the vertical displacement of the FAA standard section.
CONCLUSIONS: It was confirmed that shoving of the asphalt pavement at the junction could be reduced by placing the bottom of the buried slab on the top surface of the subbase. It was also determined that the junction type suggested in this study was more advantageous than the FAA standard section because it resists faulting by the buried slab that is connected to the concrete pavement. Faulting of the junctions caused by aircraft loading will be compared by performing finite element analysis in the following study.
PURPOSES : In this study, the propriety of expansion joint spacing of airport concrete pavement was examined by using weather and material characteristics.
METHODS: A finite element model for simulating airport concrete pavement was developed and blowup occurrence due to temperature increase was analyzed. The critical temperature causing the expansion of concrete slab and blow up at the expansion joint was calculated according to the initial vertical displacement at the joint. The amount of expansion that can occur in the concrete slab for 20 years of design life was calculated by summing the expansion and contraction by temperature, alkali-silica reaction, and drying shrinkage. The effective expansion of pavement section between adjacent expansion joints was calculated by subtracting the effective width of expansion joint from the summation of the expansion of the pavement section. The temperature change causing the effective expansion of pavement section was also calculated. The effective expansion equivalent temperature change was compared to the critical temperature, which causes the blowup, according to expansion joint spacing to verify the propriety of expansion joint applied to the airport concrete pavement.
RESULTS: When an initial vertical displacement of the expansion joint was 3mm or less, the blowup never occurred for 300m of joint spacing which is used in Korean airports currently. But, there was a risk of blow-up when an initial vertical displacement of the expansion joint was 5mm or more due to the weather or material characteristics.
CONCLUSIONS: It was confirmed that the intial vertical displacement at the expansion joint could be managed below 3mm from the previous research results. Accordingly it was concluded that the 300m of current expansion joint spacing of Korean airports could be used without blowup by controling the alkali-silica reaction below its allowable limit.
PURPOSES: In this study, a three-dimensional nonlinear finite element analysis (FEA) model for airport concrete pavement was developed using the commercial program ABAQUS. Users can select an analysis method and set the range of input parameters to reflect actual conditions such as environmental loading.METHODS : The geometrical shape of the FEA model was chosen by considering the concrete pavement located in the third-stage construction site of Incheon International Airport. Incompatible eight-node elements were used for the FEA model. Laboratory test results for the concrete specimens fabricated at the construction site were used as material properties of the concrete slab. The material properties of the cement-treated base suggested by the Federal Aviation Administration(FAA) manual were used as those of the lean concrete subbase. In addition, preceding studies and pavement evaluation reports of Incheon International Airport were referred for the material properties of asphalt base and subgrade. The kinetic friction coefficient between the concrete slab and asphalt base acquired from a preceding study was used for the friction coefficient between the layers. A nonlinear temperature gradient according to slab depth was used as an input parameter of environmental loading, and a quasistatic method was used to analyze traffic loading. The average load transfer efficiency obtained from an Heavy falling Weight Deflectomete(HWD) test was converted to a spring constant between adjacent slabs to be used as an input parameter. The reliability of the FEA model developed in this study was verified by comparing its analysis results to those of the FEAFAA model.RESULTS : A series of analyses were performed for environmental loading, traffic loading, and combined loading by using both the model developed in this study and the FEAFAA model under the same conditions. The stresses of the concrete slab obtained by both analysis models were almost the same. An HWD test was simulated and analyzed using the FEA model developed in this study. As a result, the actual deflections at the center, mid-edge, and corner of the slab caused by the HWD loading were similar to those obtained by the analysis.CONCLUSIONS : The FEA model developed in this study was judged to be utilized sufficiently in the prediction of behavior of airport concrete pavement.
국내 항공교통량은 매년 지속적으로 증가하여 2016년에 역대 최고치를 기록하였으며, 앞으로의 항공수요는 지속적으로 증가 할 것으로 예측된다. 하지만 국내 주요 공항시설의 노후화가 지속되어 설계공용수명20년을 초과한 활주로가 증가하고 있으며, 공항포장의 품질관리 및 유지보수의 중요성이 증대되고 있는 시점이다. 따라서 본 연구에서는 공항포장의 재료적으로 보완된 기준을 제시하기 위해 대표 공항 3곳을 선정하여 배합비, 골재특성 및 재령별 포장파손종류를 검토하여 개선된 배합범위를 제시하였으며, 12가지의 배합 Case를 선정하여 동결융해시험을 통한 내구성능을 검증하는 단계에 있다. 각 공항의 배합설계기준, 시방배합표, 골재의 특성을 비교 및 분석하였으며, 주요파손의 종류를 파악하여 주요파손이 나타내는 재료적 특징과 원인을 조사하였다. 또한 포장의 내구성저하에 영향을 미치는 인자를 중점으로 3개 대상 공항의 배합비 및 골재특성을 비교하였다. 그 결과 콘크리트 포장의 내구성 증진을 위해 시멘트사용량 및 혼화제사용량을 증가하고, 잔골재의 0.08mm체 통과율(미립분)을 감소하는 방향의 개선배합을 제시하였다. 표 1과같이 단위 시멘트량, 혼화제 사용량 및 잔골재 미립분 함량을 각각 변수로 설정하였으며, 단위수량을 169kg/m3, 잔골재율을 35.9%로 고정하여 12가지 Case를 선정하고 각 Case별로 2개의 공시체를 제작하여 동결융해실험을 진행중에 있다. 현재 실험은 12가지 Case중 6개의 실험을 진행하고 있으며 추후 나머지 6개를 더 진행하여 배합변수와 내구성간의 관계를 분석할 예정이다. 또한 내구성이 높은 Case를 선정하여 압축강도, 포아송비 및 탄성계수의 실험을 추가적으로 진행하여 적정 개선배합범위를 제시 할 것이다.
콘크리트에 발생하는 건조수축은 콘크리트 구조체 내부에 존재하는 수분의 이동에 의해 발생하며 강도발현시점 이후부터 점진적으로 그 크기가 커진다. 콘크리트에 발생할 수 있는 건조수축의 크기는 골재나 시멘트 등의 특성에 따라 다르나 약 40-1000 의 범위에서 발생하므로 그 크기는 무시할 수 없는 수준이다. 많은 연구자들은 콘크리트의 건조수축의 약 20-25%가 재령 2주내에, 약 50-60%가 3개월 내에, 80% 이상이 재령 1년 이내에 발생하는 것으로 판단하고 있다. 다만 콘크리트 포장에서는 깊이에 따라 건조수축의 발생의 진행정도가 다르며 이로 인해 포장체 상부와 하부에서의 수축차이가 생기는 부등건조수축이 발생하므로 단순히 구조체 전체가 동등하게 수축한다고 가정할 수 없다. 본 연구는 공항 콘크리트포장을 대상으로 한 유한요소해석 모형에 실제 현장에서 약 9개월간 계측한 슬래브 깊이별 실측 온도를 적용하여 계절적 온도변화에 의한 포장체의 거동을 해석하였다. 유한요소해석 결과와 실제 현장에서 계측한 슬래브 위치별, 깊이별 변형률을 비교 분석하였으며, 온도의 영향만을 반영하여 해석을 실시한 결과와 건조수축이 발생하는 실제 슬래브의 거동사이에 차이가 발생함을 확인하였다. 상대적으로 재령 초기에 건조수축의 발생이 작은 슬래브 바닥면을 기준으로 보정계수를 추정하여 해석결과를 보정하였으며 슬래브의 재령에 따른 깊이별 건조수축의 발생 경향을 확인할 수 있었다.
공항 콘크리트 포장 슬래브는 온도와 습도 등 환경요인의 복합적인 영향으로 수축과 팽창을 반복한다. 하지만 슬래브 상·하부간의 비선형적인 온도구배로 인해 깊이에 따른 열팽창률이 다르며, 슬래브 표면에서의 증발로 인한 수분 손실로 인해 부등건조수축이 발생하여 위아래로 뒤틀리는 컬링(Curling)거동을 야기한다. 이처럼 환경요인에 의한 슬래브의 거동은 단기적으로 일주기의 대기 온도변화에 의한 거동특성을 보이며, 장기적으로 건조수축 및 계절적인 온도변화에 의한 거동특성을 보인다. 본 연구에서는 인천국제공항 현장에서의 HWD실험을 통하여 단기 및 장기적인 콘크리트 포장 슬래브의 거동을 예측하고자 하였다. 본 연구를 위해 2016년 11월부로 인천국제공항의 4단계 건설사업 중 3단계 건설사업이 진행중인 여객계류장 현장에 정적 및 동적 계측기를 설치하였으며, 상시적으로 정적변형률을 계측함과 동시에 정기적으로 HWD실험을 통해 동적변형률을 계측하였다. 계절별 거동특성을 분석하기 위해 2017년 3월, 5월, 8월 3차례에 걸쳐 HWD실험을 실시하였으며, 일주기 거동특성을 분석하기 위해 매 실험마다 3시, 7시, 11시, 15시, 21시에 걸쳐 총 5회의 실험을 실시하였다. HWD 실험을 통해 그림 1과 같이 슬래브의 중심, 모서리, 우각부의 내측 및 외측을 대상으로 타격하였으며, 처짐량, 충격강도계수(ISM), 하중전달률(LTE), 포장체 내 변형률, 역산 탄성계수를 조사하여 분석하였다. 현재까지의 HWD실험을 통해 슬래브 거동특성을 분석한 결과 초기상태의 슬래브는 부등건조수축으로 인한 Curl-up이 발생하며, 우각부와 보조기층이 분리된 것으로 예측되었다. 하지만 재령이 지날수록 일정한 Curl-up상태를 유지한 체 보조기층의 침하가 동반되어 Curl-up이 완화되는 거동이 예측되었다. 본 연구진은 추후 추가적인 HWD실험을 실시하여 슬래브 거동 예측결과를 검증 할 예정이다.