There are growing concerns that the recently implemented Earthquake Early Warning service is overestimating the rapidly provided earthquake magnitudes (M). As a result, the predicted damages unnecessarily activate earthquake protection systems for critical facilities and lifeline infrastructures that are far away. This study is conducted to improve the estimation accuracy of M by incorporating the observed S-wave seismograms in the near source region after removing the site effects of the seismograms in real time by filtering in the time domain. The ensemble of horizontal S-wave spectra from at least five seismograms without site effects is calculated and normalized to a hypocentric target distance (21.54 km) by using the distance attenuation model of Q(f)=348f0.52 and a cross-over distance of 50 km. The natural logarithmic mean of the S-wave ensemble spectra is then fitted to Brune’s source spectrum to obtain the best estimates for M and stress drop (SD) with the fitting weight of 1/standard deviation. The proposed methodology was tested on the 18 recent inland earthquakes in South Korea, and the condition of at least five records for the near-source region is sufficiently fulfilled at an epicentral distance of 30 km. The natural logarithmic standard deviation of the observed S-wave spectra of the ensemble was calculated to be 0.53 using records near the source for 1~10 Hz, compared to 0.42 using whole records. The result shows that the root-mean-square error of M and ln(SD) is approximately 0.17 and 0.6, respectively. This accuracy can provide a confidence interval of 0.4~2.3 of Peak Ground Acceleration values in the distant range.
인공위성은 최첨단 기술로써 시공간적 관측제약이 적어 해양 사고에 효과적 대응과 해양 변동 특성 분석 등으로 각국의 국가 기관들이 위성 정보를 활용하고 있다. 하지만 고해상도 위성 관측 기반 해수면 온도 자료(Operational Sea Surface Temperature and Sea Ice Analysis, OSTIA)는 위성의 기기적, 또는 지리적 오류와 구름으로 인해 낮게 관측되거나 공백으로 처리되며 이를 복원하기까지 수 시간이 소요된다. 본 연구는 최신 딥러닝 기반 알고리즘인 LaMa 기법을 활용하여 결측된 OSTIA 자료를 복원하고, 그 성능을 기존에 이용되어 온 세 가지 영상처리 기법들의 성능과 비교하여 평가하였다. 결정계수(R²)와 평균절대오차(MAE) 값을 이용하여 각 기법의 위성 영상 복원 성 능을 평가한 결과, LaMa 알고리즘을 적용하였을 때의 R²과 MAE 값이 각각 0.9 이상, 0.5℃ 이하로, 기존에 사용되어 온 쌍 선형보간법, 쌍 삼차보간법, DeepFill v1 기법을 적용한 것보다 더 우수한 성능을 보였다. 향후에는 현업 위성 자료 제공 시스템에 LaMa 기법을 적용하여 그 가능성을 평가해 보고자 한다.
낙동강 하구 기수생태 복원이 본격으로 논의가 진행 전인 2016년까지는 하류 수위의 예측을 위해 하구에서 수km 떨어진 기존 조위관측소(부산 및 가덕도)의 측정 자료를 활용하여 분석을 수행하였지만, 조위와 위상 차이로 인해 예측이 용이하지 않았다. 따라서, 낙 동강 하굿둑 인접 외해역에서 조석 영향을 받는 수위관측치를 이용하여 조석조화분해를 통한 정밀한 조위 예측 산정의 필요성이 대두되 어 본 연구를 수행하였다. 연구의 방법으로는 낙동강하굿둑 인근 외해역에서 10분 간격으로 기간별 관측자료의 저장상태 및 이상자료 유 무를 확인하고, 조석조화분해 프로그램인 TASK2000(Tidal Analysis Software Kit) Package를 이용하여 관측조위와 예측조위를 1대 1 비교하여 회귀상관분석을 수행하였다. 분석 결과, 관측조위와 예측조위간의 상관도는 0.9334로 높게 나타났으며, 당해 연도의 조위예측 분석시 직전 연도의 1년 조석관측 자료를 조화분해하여 산출된 조화상수를 이용하여 조위예측을 실시하면 보다 정확한 결과를 산출할 수 있음을 확인 하였다. 이를 바탕으로 2022년 예측조위를 생성하여 낙동강 하구 기수생태 복원의 해수유입량의 산정에 활용 중이다.
본 연구에서는 칠발도, 거문도, 동해에서 20년 이상 관측된 파랑자료를 16 방위별 극치확률분석을 통해 재현빈도별 심해설 계파를 산정하였고, 이 값을 방향을 고려하지 않은 전방향파의 심해설계파와 비교하였다. Weibull 분포함수를 확률분포함수로 사용하였 으며, 최소자승법을 사용해서 매개변수를 결정하였다. 추정된 분포함수는 Kolmogorov-Smirnov 방법을 사용하여 적합도를 검증하였다. 그 결과 방향별로 구한 심해설계파가 전방향파의 심해설계파보다 모든 방향에서 상대적으로 작은 것으로 나타났다. 파향별로 구한 50년 빈도 설계파고는 칠발도, 거문도, 동해에서 각각 7.46 m(NNE), 12.05 m(S), 9.69 m(SSW)가 최대값이지만, 전방향파로 구한 설계파고는 각각 7.91 m, 13.82 m, 10.38 m이었다. 이는 현재 해양 및 연안 구조물 설계에 사용하고 있는 16 방위별 심해설계파고가 과소산정되었을 가능 성이 있음을 보여준다.
급격한 기후 변화와 해양 온난화에 의해 지난 수십 년 동안 파고의 변동성이 증가하였다. 상위 1% (또는 5%) 파고와 같은 극한 파고는 국지적인 해역 뿐만 아니라 전 지구 대양에서도 평균 파고에 비해 현저하게 증가하였다. 1991년부터 인공위성 고도계를 활용하여 유의파고를 지속적으로 관측하고 있으며 통계적 기법을 기반으로 100년 빈도 유의파고를 추정하기에 비교적 충분한 자료가 축적되었다. 이어도 해양과학기지에서 유의파고 극값을 추정하기 위하여 2005년부터 2016년까지 위성 고도계 자료를 활용하였다. 대표적인 극값 분석 방법인 Initial distribution Method (IDM) 와 Peak over Threshold (PoT)를 위성 도고계 유의파고 관측 자료에 적용하고 이어도 해양과학기지에서 관측된 실측 자료와 비교하였다. 이어도 해양과학기 관측 자료에 IDM과 PoT 기법을 적용하여 추정된 100년 빈도 유의파고는 각각 8.17 m와 14.11 m이며, 인공위성 고도계 관측 자료를 활용하였을 때는 각각 9.21 m와 16.49 m이었다. 관측 최대값과의 비교 분석에서 IDM을 활용한 분석은 유의파고 극값을 과소추정 하는 경향을 보였다. 이는 IDM 보다 PoT 기법이 유 의파고의 극값을 적절하게 추정하고 있음을 의미한다. PoT 기법의 우수성은 높은 유의파고가 발생하는 태풍의 영향을 받는 이어도 해양과학기지 실측 자료를 활용한 결과에서도 증명되었다. 또한 PoT 기법으로 추정된 유의파고 극값의 안정성은 고도계 자료의 감소에 따라 저하될 수 있음을 확인하였다. 인공위성 고도계 자료를 활용하여 유의파고 극값 추정시 발생할 수 있는 한계점과 인공위성 자료를 검증할 수 있는 자료로써 이어도 해양과학기지 관측 자료의 중요성에 대하여 논의하였다.
대한민국 기상청에서 사용하고 있는 UM (Unified Model, UM) 모델의 국지예측시스템(Local Data Assimilation and Prediction System, LDAPS)은 수치모델 모의 시 대기경계층 유형에 따라 물리과정을 다르게 계산하기 때문에 이 과정을 검증하는 것은 모델의 정확도 향상에 중요하다. 따라서, 본 연구에서는 수치모델의 대기경계층 유형을 관측자료 를 기반으로 검증하였다. 관측자료를 기반으로 대기경계층 유형을 분류하기 위해서 보성 표준기상관측소에서 수행한 여름철 집중관측자료(라디오존데, 플럭스관측장비, 도플러 라이다, 운고계)를 활용하였으며, 2019년 6월 18일 부터 8월 17일 까지 61일 동안에 총 201회의 관측자료를 분석하였다. 또한 관측자료와 수치모델 결과가 다른 경우를 보면, 관측자료를 기반으로 한 대기경계층 유형 분류 결과에서 2유형으로 분류되는 사례가 수치모델에서는 1유형으로 분류된 사례가 53회로 가장 많이 나타났다. 그 다음으로는 관측자료를 기반으로 한 대기경계층 유형 분류 결과에서 5유형과 6유형 으로 분류되는 사례가 수치모델에서는 3유형으로 분류된 사례가 많이 나타났다(각각 24회, 15회). 관측결과와 수치모델 모의 결과가 일치하지 않은 사례는 모두 층적운 접합 여부 및 적운 모의 등 수치모델의 구름물리 부분의 모의 성능에 기인하여 발생한 것이라고 분석된다. 따라서, 대기경계층 유형 분류의 구름물리과정의 모의 정확도를 개선하면 수치모델 성능이 향상 될 것으로 판단된다.
한반도 남해안 지역의 여름철 대기 안정도 특성을 분석함으로써, 한반도 특성에 맞는 강수 예측을 위한 대기 안정도 지수의 정량적인 임계값을 도출하고자 하였다. 보성 표준기상관측소에서 관측한 2019년도 여름철 라디오존데 집중관측자료를 분석에 사용하였으며, 총 관측자료는 243개이다. 강수 유무 및 중규모 대기 현상에 대한 대기 안정도를 분석하기 위해서, 대류가용잠재에너지(Convective Available Potential Energy, CAPE)와 폭풍지수(Storm Relative Helicity, SRH)를 비교하였으며 특히 SRH 분석은 고도별로 총 4개의 층으로(0-1, 0-3, 0-6, 0-10 km) 세분화하였다. 강수 유무에 따른 분석은 강수가 없는 경우, 강수발생 전 12시간, 강수 발생 시로 구분하여 수행하였다. 그 결과, 2019년도 보성에서 발생한 여름철 강수 예측에는 CAPE 보다 SRH가 더 적합하며 0-6 km SRH가 약한 토네이도가 발생 가능한 기준과 같은 150 m 2 s−2 이상일 경우 강수가 발생한 것으로 분석 된다. 또한, 장마와 태풍 기간의 대기 안정도를 분석한 결과를 보면, 일반적으로 SRH는 대기 깊이가 두꺼워질수록 값이 커지는데 반해서 0-10 km SRH 평균값 보다 0-6 km 의 SRH 값이 더 크게 나타났다. 따라서, 2019년도 보성에서 발생한 태풍에 의한 강수를 판별하는 데는 0-6 km 의 SRH 값이 더 효과적이라고 할 수 있다.
기상청에서 운용하는 268개의 가속도 관측망에 대한 방위각 보정값을 측정하기 위해 배경잡음 교차상관 방법을 사용하였다. 이 방법은 배경잡음 자료를 사용하기 때문에 원거리 지진자료를 사용하는 방법과 달리 특정 조건에 맞는 지진을 선정할 필요가 없고, 한반도와 같은 조밀한 관측망에 적용하여 단기간의 연속 파형 자료만을 사용해 신뢰할 수 있는 방위각 보정값을 측정할 수 있다. 계산에는 2020년 1월부터 2020년 2월까지 총 268개의 기상청 가속도 관측망에 기록된 3성분 연속 파형 자료를 사용했다. 계산된 결과를 보면 기존에 원거리 지진자료를 사용한 결과와 매우 유사하며, 기존 결과에서 누락된 가속도 관측소들을 포함한 대부분 관측소의 방위각 보정 계산 결과가 표준편차 5o 이하로 안정적으로 계산되는 것을 확인할 수 있다. 따라서 본 연구를에서 사용한 방법을 활용해 기상청 가속도 관측소에 대한 방위각 보정값을 지속적으로 모니터링하고 측정된 결과를 활용하면, 가속도 자료의 수평 성분을 활용한 다양한 연구들에 활용할 수 있을 것이다.
기후변화와 지구환경변화에 중요한 역할을 하고 있는 해수면온도는 인공위성 적외선 센서가 관측하는 피층 수온과 측기들이 관측하는 표층 수온으로 나누어질 수 있다. 국외 여러 기관에서 보급되고 있는 해수면온도 관측 자료들은 각각 서로 다른 깊이의 수온을 나타내고 있어서 해양 피층과 표층 수온 사이의 관계를 이해하는 것은 매우 중요하 다. 본 연구에서는 적외선 라디오미터를 해양조사선에 장착하기 위한 시스템을 설계하고 부착하고 운용하여 국내에서 처음으로 해양 피층 수온을 산출할 수 있는 관측 환경을 구축하였다. 선박 관측 전에 실험실에서 라디오미터 기기의 검보정을 실시하여 보정 계수를 산출하였다. 관측된 해수면에서 방출된 복사에너지와 하늘 복사에너지를 피층 수온으로 산출하는 일련의 과정을 적용하였다. 산출된 피층 해수면온도를 현장 관측 표층 수온자료와 비교하여 표층과 피층 수온 차이를 정량적으로 조사하고자 하였으며, Himawari-8 정지궤도 위성 해수면온도 자료와의 비교를 통해 해양 상층 연직 구조의 특성을 이해하고자 하였다. 2020년 4월 21일부터 5월 6일까지 남해안의 장목항과 동해 남부를 관측한 해양 피층 수온은 전체적으로 표층 수온과 0.76oC 정도의 차이를 보였다. 또한 이 두 수온 차이의 평균제곱근오차는 약 0.6oC 에서 0.9oC까지의 일간변화를 가지고 있었으며, 하루 중 1-3시에 0.83-0.89oC로 가장 크게 나타났으며, 15시에 0.59oC로 최소의 차이를 가지고 있었다. 또한 편차도 0.47-0.75oC의 일간변화를 나타내었다. 해양 피층 관측 수온과 위성 해수면 온도 간 차이는 약 0.74oC의 평균제곱근오차, 0.37oC의 편차를 나타냈다. 본 연구의 분석을 통해 관측 수심에 따른 피 층-표층 수온의 차이를 확인할 수 있었으며, 피층-표층 수온 차의 계절적 변화를 정량적으로 이해하고 또 변동 요인과의 관련성을 연구하기 위하여 연구조사선을 이용한 추가적인 연안 및 대양 관측이 지속적으로 진행되어야 함을 시사한다.
PURPOSES : This study verifies the appropriateness of the observed traffic volume using car navigation traffic volume data.
METHODS : In this study, we developed an annual average daily traffic (AADT) estimation model that can verify the total amount of traffic by using navigation traffic volume data. In addition, a method to verify the appropriateness of the observed traffic volume was developed using time-based navigation traffic volume data that can check the characteristics of traffic volume at each point. RESULTS : As a result of the analysis of this study, it was found that 674 of the 697 short-duration survey spots of the freeways were appropriate and that 23 spots needed to be revised. CONCLUSIONS : As a result of the analysis of this study, it was found that there was a strong positive correlation between the observed traffic volume and the car navigation traffic volume. Thus, the appropriateness of the observed traffic was determined by verifying the total amount of observed traffic and the observed traffic volume by time.
본 연구에서는 고해상도 ERA5 재분석자료 중 우리나라 지상 온도 자료의 신뢰성을 검증할 목적으로 종관기상 관측소(ASOS) 관측자료와 비교를 수행하였다. 새롭게 생산되어 배포 중인 ERA5 재분석자료는 높은 시·공간적 해상도를 가져 여러 분야에 활용성이 매우 높다. 자료의 분석 기간은 ASOS 61개 관측소가 1999년 이후로 결측률이 매우 낮으며 시간평균 자료를 제공한다는 점을 고려하여 1999-2018년 기간으로 설정하였다. ERA5 격자 자료는 격자 내 90-m 수치표고모델(DEM) 분포로부터 내륙, 해안, 산악 지역에 해당하는 지형학적인 특성에 따라 분류하여 ASOS 지점 자료와 비교되었다. 분석 기간 전체에 대한 평균 지상 온도는 ASOS와 ERA5 모두 공간 분포의 패턴과 값은 큰 차이없이 유사하였다. ASOS와 ERA5의 산점도 비교를 통해 전체 기간, 특히 여름, 겨울 기간에 대해 계절 변동성을 가진다는 특성을 확인할 수 있었으며, 이는 달별 두 자료 사이의 매시간 차이 확률밀도함수(PDF)의 시계열을 통해서도 확인되었다. 두 자료 사이의 차이를 통계지수인 NMB, RMSE를 계산하여 정량화시켰을 때, 각 값에서 지역적인 특성을 보였으나 모든 지수에서 큰 차이가 없다고 판단할 수 있었으며, 상관성을 보기 위해 R과 IOA를 통해 구한 값은 모두 0.99에 근접하였다. 특히 일평균 산출에 있어 1-시간-평균 값 24개를 이용한 일평균의 경우가 최고와 최저온도의 평균을 이용 하는 일평균에 비해 오차가 작게 나타났고, 두 자료 사이의 상관성도 높게 나타남을 확인하였다. 두 자료의 차이가 나타나는 원인으로 ERA5 격자 내 지형 효과가 가장 클 것으로 판단하여 수치표고모델을 활용하여 각 지역별 PDF를 이용해 첨도 및 왜도를 구하고, 이를 온도 차이 파워 스펙트럼의 1년 주기 변동 크기와 비교하였다. 그 결과, 양의 상관성을 가졌음을 확인하였다. 이는 지형 효과가 두 자료 차이의 원인이라고 설명하는 결과이다.
지난 수십년 동안 인공위성을 통해 광범위하고 주기적으로 관측된 해수면온도 자료를 사용하여 일별 해수면온도 합성장이 생산되고 있으며 기후변화 감시와 해양 대기 예측 등 다양한 목적으로 활용되어 왔다. 본 연구에서는 지역적인 해역에서 최적화된 활용을 위해 한반도 주변해역에서 해수면온도 합성장 자료의 정확도 평가와 오차 특성 분석을 수행하였다. 2016년 1월부터 12월까지 이어도 해양과학기지 관측 수온 자료를 활용하여 4종의 다중 인공위성 기반 해수면온도 합성장 자료(OSTIA (Operational Sea Surface Temperature and Sea Ice Analysis), OISST (Optimum Interpolation Sea Surface Temperature), CMC (Canadian Meteorological Centre) 해수면온도 및 MURSST (Multi-scale Ultra-high Resolution Sea Surface Temperature))를 비교하여 각 해수면온도 합성장의 정확도를 평가하였다. 이어도 해양과학기지 수온 자료에 대하여 각 해수면온도 합성장은 최소 0.12oC (OISST)와 최대 0.55oC (MURSST)의 편차와 최소 0.77oC (CMC 해수면온도)와 최대 0.96oC (MURSST)의 평균 제곱근 오차를 나타냈다. 해수면온도 합성장 사이의 상호 비교 결과에서는 −0.38-0.38oC의 편차와 0.55-0.82oC의 평균 제곱근 오차의 범위를 보였으며 OSTIA와 CMC 해수 면온도 자료가 가장 작은 오차 특성을 보인 반면 OISST와 MURSST 자료는 가장 큰 오차 특성을 나타내었다. 이어도 해양과학기지와 가장 가까운 지점에서 해수면온도 합성장 자료를 추출하여 시계열을 비교한 결과에서는 이어도 해양과학기지 관측 수온 뿐만 아니라 모든 해수면온도 합성장 자료에서 뚜렷한 계절 변동을 보였으나 봄철 해수면온도 합성장은 이어도 해양과학기지 관측 수온에 비해 과대추정되는 경향이 나타났다.
급경사 복잡지형 산체인 울릉도는 국지기상 특성이 매우 강하기 때문에 풍력자원평가에 사용되는 지상관측자료를 선택할 때 먼저 그 유효성을 평가하여야 한다. 본 논문에서는 종관기상자료인 재해석자료 또는 중규모 수치기상예측 자료와 지상관측자료의 상 관성 분석을 통하여 지상관측자료의 국지기상 대표성을 평가하였다. 또한 지형에 의한 유동장 변형을 정확하게 고려하기 위하여 전산 유동해석을 할 경우에, 종관기상자료를 축소화한 예측결과가 얼마나 지상관측자료와 일치하는지도 평가하였다. 이때 지형복잡지수를 이용하여 지형이 복잡해질수록 국소배치의 예측오차도 증가함을 확인하였다. 울릉도의 지상관측자료는 현포리의 고공 기상탑 측정자 료를 제외하고는 모두 국지기상 특성이 강하게 나타났으며, 전산유동해석으로 지형효과를 반영하더라도 풍계효과는 반영하지 못함에 따라 지상관측자료에 의존한 풍력자원평가에 불확도가 상당히 클 것으로 판단된다. 따라서 풍력발전 후보지에서 반드시 고공 기상탑 을 설치하고 IEC 61400-12를 준용한 측정을 수행하여야 할 것으로 사료된다.
강수는 기상학, 농업, 수문학, 자연재해, 토목 및 건설 등 분야에서 매우 중요한 기상 변수들 중 하나이다. 최근 이러한 강수를 탐지하고, 측정 및 예보를 하기 위해서 위성원격탐사기술은 필수적이다. 따라서 본 연구에서는 미국항공우주국(National Aeronautics and Space Administration, NASA)에서 발사한 전 지구 강수 관측 위성인 GPM 위성을 기반으로 다양한 자료와 합성된 강수 자료인 IMERG 자료의 정확도를 한반도, 특히 남한지역에 대해 지상관측자료와 비교분석 하였다. 기상자동관측 장비인 AWS의 관측 강수량을 검증 자료로 사용하여, 2016년 1월부터 12월까지 1년간의 기간 동안 한반도의 육상부분에 대하여 IMERG의 월 강수량 자료를 비교 검증하였다. 잘 알려진 대로 위성은 해안가와 섬 지역 같은 부분에서 단점이 있지만, 별도로 비교 분석하였다. 위성 자료인 IMERG와 지상 관측 자료인 AWS를 비교한 결과, 상관계수가 0.95로 높은 상관성을 보였으며, Bias, RMSE의 오차 비교에서도 각각 월 15.08 mm, 월 30.32 mm의 낮은 오차를 산출하였다. 해안지역에서도 육상지역과 마찬가지로 0.7 이상의 높은 상관계수를 산출하며, 강수 자료로서 IMERG의 신뢰도를 검증하였다.
우리는 오리온 분자운 복합체의 북부 필라멘트(이하 NF)에 대하여 12CO (J=1-0) 분자선의 자료를 이용하여 은하 평면이 분자의 운동과 운동학에 미치는 영향을 연구하였다. 6 m 서울대학교 전파망원경(Seoul Radio Astronomy Observatory, SRAO)을 이용하여 2arcmin 공간분해능으로 은하면으로부터 먼 순서로 NF1, NF2, NF3 세 곳을 총 270시간 동안 관측된 자료를 사용하였다. 은하면과 OMC NF는 12CO (J=2-1) 경우 3% 밀도에서, 티끌의 경우 9% 밝기 수준에서 자기장을 따라 서로 연결되어 있었다. 12CO (J=1-0), 12CO (J=2-1), 성간 티끌 관측결과를 비교해본 결과, 세 경우 모두 NF3에서는 고루 분포했지만, NF1과 NF2에서는 비교적 밀도가 높은 특정 영역에서만 함께 나타났다. NF는 단일 구조를 보였으며, NF1에서는 부분 수축 운동을, NF2에서는 하단에서 회전 운동이 나타났고, NF3에서는 유일하게 명확히 자기장에 연관된 나선형 회전이 보였다. 위치-속도 분석 결과, 12CO (J=1-0)를 비롯한 물질들은 NF2와 NF3을 따라 은하면을 향하여 흐를 가능성이 있음을 확인할 수 있었다. 은하면을 향하여 물질이 흐르는 명백한 원인을 이번 연구결과에서 볼 수 없었지만 추후의 더 정교한 관측결과가 NF1과 NF2 상단부의 회전 운동을 확인 할 수 있겠다.
차세대도시농림융합기상사업단의 에너지수지타워 관측자료를 이용하여 수도권 기상과 복사특성에 대하여 분석하 였다. 서울 수도권에 위치한 총 14개 에너지수지타워의 기온, 풍속, 상대습도, 지표면 온도, 강수량, 단파 및 장파 복사 량과 복사관측자료를 이용하여 산출한 알베도와 방출률을 분석하였다. 월별 자료에 따르면, 도시에 위치한 중랑지점에 서 알베도는 낮고 방출률은 높은 특성을 나타냈고 교외지역인 부천지점에서는 반대의 특성이 나타났다. 자연적인 지표 상태에서는 태양복사에너지를 효과적으로 반사하여 대부분 중랑지점보다 알베도가 높게 나타났다. 연 평균 기온이 비교 적 높게 나타난 지점들은 서울 도심에 위치하고 있었으며, 알베도가 대체적으로 낮게 분포되었다. 가좌지점과 뚝섬지점은 관측 기온이 높았지만, 관측소 주변 유리벽 건물 및 한강으로 둘러싸인 환경으로 알베도가 비교적 높게 나타났다. 교외지역에 위치하고, 기온이 낮았던 지점들은 대체로 낮은 방출률을 나타냈다. 그 중 부천지점에서는 다소 높은 방출 률이 나타났는데, 이는 관측지점 주변이 논과 밭으로 구성되어 있어 교외지역의 관측지점보다 지표면 온도가 상대적으 로 낮게 관측되었기 때문이다. 결과적으로 도심지일수록 알베도는 감소하고, 방출률은 증가하는 경향을 확인할 수 있다. 또한, 서울 지역의 순 복사량이 100Wm−2 이하로 나타나 에너지가 대기 중에 흡수된 것으로 볼 수 있다.
한반도 주변 해상사고가 증가함에 따라 원격탐사 자료를 활용한 선박탐지 연구의 중요성이 점점 더 강조되고 있다. 이 연구는 고해상도 광학영상에 의존하는 기존 선박탐지 분야에 수백 개 채널의 분광정보를 포함하는 초분광영상을 활용하여 새로운 선박탐지 알고리즘 제시하였다. 두 차례의 현장관측을 통해 측정한 선박 선체의 반사 스펙트럼과 AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) 초분광센서 영상의 선박 및 해수 반사 스펙트럼 간의 분광정합 기법을 적용하였다. 총 다섯 개의 탐지 알고리즘 spectral distance similarity (SDS), spectral correlation similarity (SCS), spectral similarity value (SSV), spectral angle mapper (SAM), spectral information divergence (SID)를 사용하였다. SDS는 선박 일부가 해수로 탐지되는 오차를 나타내었고, SAM은 선박과 해수 사이에 약 1.8배의 차이를 나타내어 명확한 분류 결과를 보여주었다. 이와 더불어 본 연구에서는 각 기법의 최적 임계값을 제시하여 초분광 영상에 포함되어 있는 선박을 분류하였으며 그 결과 SAM, SID가 다른 탐지 알고리즘에 비해 우수한 선박탐지 능력을 보여주었다.
This study investigates important parameters used to determine an effective peak ground acceleration (EPGA) based on the characteristics of response spectra of historical earthquakes occurred at Korean peninsula. EPGAs are very important since they are implemented in the Korean Building Code for the seismic design of new structures. Recently, the Gyeongju earthquakes with the largest magnitude in earthquakes measured at Korea took place and resulted in non-structural and structural damage, which their EPGAs should need to be evaluated. This paper first describes the basic concepts on EPGAs and the EPGAs of the Gyeongju earthquakes are then evaluated and compared according to epicentral distances, site classes and directions of seismic waves. The EPGAs are dependant on normalizing factors and ranges of period on response spectrum constructed with the Gyeongju earthquake records. Using the normalizing factors and the ranges of period determined based on the characteristics of domestic response spectra, this paper draw a conclusion that the EPGAs are estimated to be about 30 % of the measured peak ground accelerations (PGA).