Recently, many countries are performing researchs about weapon systems or communication systems using laser. Because laser weapons are relatively easy to use and can exert powerful energy with high efficiency versus cost. Also laser communication systems has many advantages compared to RF communication systems, such as big data transmission through giga-bit communication, high security and so on. In these systems, one of highly important key components is Fast Steering Mirror(FSM) to control the laser beam precisely and accurately. Therefore, in this paper, we perform static and dynamic analysis to predict performances of Fast Steering Mirror using voice coil actuators. Also we manufacture prototype of FSM on the basis of static and dynamic analysis results, and perform the performance test about four items. As a result, we lay a foundation for research about FSM and laser systems, and expact to contribute improvement of performances of systems using laser.
Motor-operated valve functions to block or connect the flow of fluid in nuclear power plant and especially safety-related valves are evaluated with operability margin calculations, that should have positive value in both open and close stroke. Although all actuators have inertia force which increase operating margin of valve closing stroke, inertia force, after control switch operation in actuator is not considered in evaluating operability margin calculation process. In this paper, the hidden margin by inertia force of each actuator model in closing stroke was studied quantitatively.
This paper presents new type magnetostrictive optical systems. The suggested wireless optical systems are developed by using two types of magnetostrictive thin film actuators. The first is a seesaw type wireless-controlled compact optical switch, and another is a comb type TbDyFeNi thin film actuator by silicon micromachining techniques with DC magnetron sputtering. In the seesaw type, TbDyFe films are selectively deposited on the micromachined switch matrix. For the optical switching operation, switch is arranged in a 1×2 array (mirror size of 5mm × 800μm × 50μm) and has different length from the supporting point. Mirrors are also actuated by externally applied magnetic fields up to 0.5T. In the comb type, the effect of Ni content on the magneto-mechanical properties of the Tb0.24Dy0.76Fe2 system is investigated with the effect of deposited film thickness of TbDyFeNi on silicon substrate for wireless microactuator. As results, magneto-mechanical characteristics are investigated. using magnetization and deflected angle variation
본 논문에서는 구조물이 과도한 기진력을 받을 때에 구조물의 진동 제어를 위하여 제안 되어진 여러 가지 포화 제어 알고리듬들의 유용성을 실제적인 관점에서 살펴보았다 제안된 포화 제어 알고리듬 중세서 수정된 뱅뱅 제어 알고리듬이 매우 유용한 것임을 확인할 수 있었으나 이는 제어력 파형 결정 파라미터의 어떤 범위내에서만 효과적이며 그 범위를 넘어서는 경우에 있어서는 제어기를 불안정하게 할 수 있음을 확인할 수 있었다 따라서 수정된 뱅뱅 제어 알고리듬의 적용시에 과도한 외부 기진력에 대하여 제어기의 안정적인 작동에 의한 구조물의 진동제어효과를 얻기 위해서 제어력 파형 파라미터를 과도 기진력의 크기에 따라 변화시키는 적응형의 방법을 제안하였고 이의 유용성을 수치실험 및 유압식 질량 감쇠기를 장착한 축소 구조물 검증 실험을 통하여 확인하였다.
This paper proposes a simple and intuitive model-free torque-tracking control for rotary electro-hydraulic actuators. The undesirable natural-velocity-feedback effect is discussed by introducing mechanical impedance into the electro-hydraulic actuation system. The proposed model-free torque control comprises inner- and outer-loop control to achieve two control objectives. Inner-loop control reduces the mechanical impedance passively and optimally. To improve the tracking accuracy, a certain form of proportional-integral-derivative control is applied to the outer loop. The robustness of the proposed closed-loop system against external disturbances is demonstrated by transforming the two-loop control structure into a disturbance observer form. The proposed method is validated on a single joint electro-hydraulic actuator.
Twisted string actuators (TSAs) are tendon-driven actuators that provide high transmission ratios. Twisting a string reduces the length of the string and generates a linear motion of the actuators. In particular, TSAs have characteristic properties (compliance) that are advantageous for operations that need to interact with the external environment. This compliance has the advantage of being robust to disturbance in force control, but it is disadvantageous for precise control because the modeling is inaccurate. In fact, many previous studies have covered the TSA model, but the model is still inadequate to be applied to actual robot control. In this paper, we introduce a modified variable radius model of TASs and experimentally demonstrate that the modified variable radius model is correct compared to the conventional variable radius string model. In addition, the elastic characteristics of the TSAs are discussed along with the experimental results.
In nature, many small insects are using jumping as a survival strategy. Among them, fleas jump in a unique method. They use an elastomer, 'Resilin’, an extensor muscle and a trigger muscle. By contracting the extensor muscle, the elastic energy, that makes a flea to jump, is stored in the resilin. After storing energy, the trigger muscle begins contracting and pulling the extensor muscle. When the extensor muscle crosses the rotational joint, direction of torque generated from the extensor muscle reverses, ‘torque reversal mechanism’. Simultaneously, the elastic energy stored in the resilin releases rapidly and is converted into the kinetic energy. It makes a flea to jump 150 times its body length. In this paper, miniaturized jumping robot using flea-inspired catapult mechanism is presented. This mechanism is based on the 4-bar linkage and the reversal joint and is actuated by Shape Memory Alloy (SMA) coiled springs describing the flea’s muscle. The robot prototype is fabricated by SCM process using glass fiber prepregs and a sheet of polyimide film. The prototype is 20mm link length, 34mm width and 2.0g weight and can jump 103cm.
This paper proposes a new string controller for puppet which is optimized in terms of the number of motors and its size. To optimize the number of motors needed for generating the essential motions of puppet, the motion of bending a leg is implemented by one string and the walking motion by two legs is implemented by one motor. To minimize the space needed for the controller when generating the essential motions of puppet, cylindrical and articulated joints are used in the controller. The proposed controller is actually implemented to perform various puppet shows and it has been proved that the size of the controller is small enough for two puppets to stand close to shake hands and it is fast enough to simulate fast dance motions.
Tactile sensation is one of the most important sensory functions for human perception of objects. Recently, there have been many technical challenges in the field of tactile display as well as tactile sensing. In this paper, we propose an innovative tactile display device based on soft actuator technology with ElectroActive Polymer(EAP). This device offers advantageous features over existing devices with respect to intrinsic flexibility, softness, ease of fabrication and miniaturization, high power density, and cost effectiveness. In particular, it can be adapted to various geometric configurations because it possesses structural flexibility, so it can be worn on any part of the human body such as finger, palm, and arm etc. It can be extensively applied as a wearable tactile display, a Braille device for the visually disabled, and a human interface in the future. A new design of the flexible actuator is proposed and its basic operational principles are discussed. In addition, a wearable tactile display device with 4x5 actuator array(20 actuator cells) is developed and its effectiveness is confirmed