검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 84

        1.
        2025.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to examine learners’ perceptions of AI-based machine translation (MT) in high school ‘Reading British and American Literature’ classes. This research explored how students perceived the impact of MT on their class participation, learning motivation, confidence in English use, and improvement in English ability. The study also examined how the effectiveness of MT use differed according to students’ English proficiency levels. A total of 153 third-year students participated in a nine-week English literature course. Data were collected through an online survey and statistically analyzed. The findings reveal that students showed positive perceptions regarding class participation, learning motivation, confidence in English use, and improvement in English ability. Notably, participation in the English literature classes using AI-based MT was significantly higher than that in other English classes. Analysis by English proficiency levels showed no significant differences in class participation and affective factors (learning motivation and confidence). However, lower-proficiency learners perceived greater improvement in English proficiency compared to higher-proficiency learners. These results suggest that incorporating AI-based MT in English literature classes can create an inclusive learning environment that supports learners across different proficiency levels, particularly benefiting lower-proficiency students in terms of improvement in English ability.
        8,000원
        2.
        2025.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 성장 단계별 돼지의 평균 사료 섭취량을 추정하고, 각 매개변수 간의 상관분석을 통해 변수를 선별한 후, 기계학습 기반 회귀분석을 통해 돼지의 사료 섭취량(FI)을 예측하는 모델을 만들고자 한다. 본 실험은 2023년 9월 14일부터 2023년 12월 15일까지 93일 동안 진행하였다. 사료는 09:00와 17:00 하루에 2회 제공하였으며, 제공된 사료의 양은 돼지의 평균 체중의 5%를 지급하였다. 돼지의 몸무게(PBW)는 매일 09:00에 이동식 돈형기를 사용하여 측정하였다. 축산환경관리시스템(LEMS) 센서를 이용하여, 돈사 내 온도(RT), 상대습도(RH), NH3를 5분 간격으로 수집하였다. 성장 단계를 3단계로 나누었으며, 각 GS1, GS2 및 GS3으로 명명하였다. 각 성장 단계별 평균 사료 섭취량과 표준편차를 구하여, 유의미성과 성장 단계별 사료 섭취의 경향을 분석하였다. 각 모델의 성능평가( , RMSE, MAPE) 시 8:2의 비율로 데이터를 분할하여, 정확도 검증을 수행하였다. 연구 결과 성장 단계별 돼지의 사료 섭취량에 유의미한 차이(p < 0.05)가 있음과 돼지가 성장할수록 일정한 양의 사료를 섭취하는 것을 확인하였다. 또한 각 변수의 상관분석 시 FI와 PBW에서 강한 상관관계가 나타났으며(R > 0.94), 각 모델의 성능평가 결과 RFR 모델이 가장 높은 정확성(  = 0.959, RMSE = 195.9, MAPE = 5.739)을 보였다.
        4,000원
        3.
        2025.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 표현 형질 생육 데이터인 엽장, 엽 수와 기상 데이 터인 생육도일을 활용하여 여러 기계 학습을 통해 마늘의 생 체중을 예측하는 모델을 개발하고자 하였다. 검증 데이터에 서 random forest 모델의 결정계수가 0.924, 평균제곱근오차 (g)는 13.583 그리고 평균절대오차는 8.885로 가장 우수하였 다. 평가 데이터에서는 Catboost 모델이 결정계수가 0.928, 평균제곱근오차(g)는 13.486 그리고 평균절대오차는 9.181 로 가장 우수하였다. 그러나 Catboost, Random forest 그리고 LightGBM 모델을 0.5, 0.3 그리고 0.2 가중치를 두어 학습한 Weighted ensemble 모델이 마늘 생체중 예측의 검증 및 평가 에 있어서 검증 데이터의 결정계수가 0.922, 평균제곱근오차 (g)가 13.752 그리고 평균절대오차는 8.877이었으며 평가 데 이터에서는 결정계수가 0.923, 평균제곱근오차(g)가 13.992 그리고 평균절대오차가 9.437로 두 번째로 우수한 결과를 나 타내었다. 이러한 결과들을 종합적으로 미루어 보았을 때, Weighted ensemble 모델이 모델의 안정성 측면에서 최적의 모델이라고 판단하였다. 따라서 농가들이 표현 형질과 기상 데이터만으로도 기계학습 기법을 통하여 마늘의 생체중 예측 을 통해 작형 모니터링이 가능할 것으로 보이며 추가적으로 다년도 데이터 취득과 검증을 통하여 성능을 고도화가 가능할 것으로 판단된다.
        4,000원
        4.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study develops a machine learning-based tool life prediction model using spindle power data collected from real manufacturing environments. The primary objective is to monitor tool wear and predict optimal replacement times, thereby enhancing manufacturing efficiency and product quality in smart factory settings. Accurate tool life prediction is critical for reducing downtime, minimizing costs, and maintaining consistent product standards. Six machine learning models, including Random Forest, Decision Tree, Support Vector Regressor, Linear Regression, XGBoost, and LightGBM, were evaluated for their predictive performance. Among these, the Random Forest Regressor demonstrated the highest accuracy with R2 value of 0.92, making it the most suitable for tool wear prediction. Linear Regression also provided detailed insights into the relationship between tool usage and spindle power, offering a practical alternative for precise predictions in scenarios with consistent data patterns. The results highlight the potential for real-time monitoring and predictive maintenance, significantly reducing downtime, optimizing tool usage, and improving operational efficiency. Challenges such as data variability, real-world noise, and model generalizability across diverse processes remain areas for future exploration. This work contributes to advancing smart manufacturing by integrating data-driven approaches into operational workflows and enabling sustainable, cost-effective production environments.
        4,000원
        5.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to improve the accuracy of road pavement design by comparing and analyzing various statistical and machine-learning techniques for predicting asphalt layer thickness, focusing on regional roads in Pakistan. The explanatory variables selected for this study included the annual average daily traffic (AADT), subbase thickness, and subgrade California bearing ratio (CBR) values from six cities in Pakistan. The statistical prediction models used were multiple linear regression (MLR), support vector regression (SVR), random forest, and XGBoost. The performance of each model was evaluated using the mean absolute percentage error (MAPE) and root-mean-square error (RMSE). The analysis results indicated that the AADT was the most influential variable affecting the asphalt layer thickness. Among the models, the MLR demonstrated the best predictive performance. While XGBoost had a relatively strong performance among the machine-learning techniques, the traditional statistical model, MLR, still outperformed it in certain regions. This study emphasized the need for customized pavement designs that reflect the traffic and environmental conditions specific to regional roads in Pakistan. This finding suggests that future research should incorporate additional variables and data for a more in-depth analysis.
        4,000원
        7.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 15차 bézier 곡선을 사용하여 기존의 연구보다 더 유연한 빔 형상을 설계하고, 더 넓은 설계 공간에서 최적 설계를 수 행하여 최적의 열전도도를 갖는 빔 형상을 설계한다. 설계 공간이 넓어지면 그 만큼 계산양이 증가하게 되는데, 고차원 변수 공간에서 효율적으로 작동하는 인공신경망을 사용하여 최적 설계를 가속화하여 계산 한계를 극복하였다. 더 나아가 최적의 탄성계수를 갖는 빔의 형상과 비교하였으며 열전도와 탄성학 사이의 수학적 유사성을 이용하여 빔 형상을 설명한다. 본 연구에서는 인공지능을 활용 한 형상 최적설계를 통해 기존의 한계를 뛰어넘는 격자구조의 빔 형상을 제안한다. 먼저, SC(Simple Cubic), BC(Body Centered Cubic) 격자 구조 빔 형상을 bézier 곡선으로 모델링하고 bézier 곡선의 제어점 좌표를 무작위로 설정하여 학습데이터를 확보하였다. NN(Neural Network) 및 GA(Genetic Algorithm)를 통해 우수한 유효 열전도도를 가진 빔 형상을 생성하여 최적의 빔 형상을 설계하였 다. 본 연구를 통해 추후 다양한 열 조건에서 격자구조의 적절한 구조적 해답을 제시할 수 있을 것으로 기대된다.
        4,000원
        8.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Many school buildings are vulnerable to earthquakes because they were built before mandatory seismic design was applied. This study uses machine learning to develop an algorithm that rapidly constructs an optimal reinforcement scheme with simple information for non-ductile reinforced concrete school buildings built according to standard design drawings in the 1980s. We utilize a decision tree (DT) model that can conservatively predict the failure type of reinforced concrete columns through machine learning that rapidly determines the failure type of reinforced concrete columns with simple information, and through this, a methodology is developed to construct an optimal reinforcement scheme for the confinement ratio (CR) for ductility enhancement and the stiffness ratio (SR) for stiffness enhancement. By examining the failure types of columns according to changes in confinement ratio and stiffness ratio, we propose a retrofit scheme for school buildings with masonry walls and present the maximum applicable stiffness ratio and the allowable range of stiffness ratio increase for the minimum and maximum values of confinement ratio. This retrofit scheme construction methodology allows for faster construction than existing analysis methods.
        4,000원
        9.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to seismically deficient details, existing reinforced concrete structures have low lateral resistance capacities. Since these building structures suffer an increase in axial loads to the main structural element due to the green retrofit (e.g., energy equipment/device, roof garden) for CO2 reduction and vertical extension, building capacities are reduced. This paper proposes a machine-learning-based methodology for allowable ranges of axial loading ratio to reinforced concrete columns using simple structural details. The methodology consists of a two-step procedure: (1) a machine-learning-based failure detection model and (2) column damage limits proposed by previous researchers. To demonstrate this proposed method, the existing building structure built in the 1990s was selected, and the allowable range for the target structure was computed for exterior and interior columns.
        4,000원
        10.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Dynamic responses of nuclear power plant structure subjected to earthquake loads should be carefully investigated for safety. Because nuclear power plant structure are usually constructed by material of reinforced concrete, the aging deterioration of R.C. have no small effect on structural behavior of nuclear power plant structure. Therefore, aging deterioration of R.C. nuclear power plant structure should be considered for exact prediction of seismic responses of the structure. In this study, a machine learning model for seismic response prediction of nuclear power plant structure was developed by considering aging deterioration. The OPR-1000 was selected as an example structure for numerical simulation. The OPR-1000 was originally designated as the Korean Standard Nuclear Power Plant (KSNP), and was re-designated as the OPR-1000 in 2005 for foreign sales. 500 artificial ground motions were generated based on site characteristics of Korea. Elastic modulus, damping ratio, poisson’s ratio and density were selected to consider material property variation due to aging deterioration. Six machine learning algorithms such as, Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Artificial Neural Networks (ANN), eXtreme Gradient Boosting (XGBoost), were used t o construct seispic response prediction model. 13 intensity measures and 4 material properties were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks present good prediction performance considering aging deterioration.
        4,000원
        11.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 성격이 정신병리를 예측하는 가를 지도식 기계학습 방법론을 통해 확인해보고자 하였다. 이를 위해, 한국판 싱어루미스 심리 유형 검사(K-SLTDI) 제 2판과, KSCL-95 검사를 사용하여 전국의 총 521명의 성인을 대상으로 비대면 설문조사를 실시하였다. 예측 분석을 위하여 군집분석, 분류분석, 회귀기반 디코딩을 수행하였다. 그 결과 정신병리의 심 각도를 반영하는 4개의 군집을 확인하였다. 또한, 한국판 싱어루미스 심리 유형 검사로 정신병리 수준에 대한 가설 기반 및 데이터 기반 심각도가 반영된 군집을 예측할 수 있었으며, 이는 전체 KSCL-95 및 3개의 상위 범주, 그리고 타당도에 대해 모두 정확하게 분류되었다. 회귀기반 디코딩 결과는 SLTDI 유형검사는 전체 검사 데이터를 활용하였을 때 임상수준 을 유의미하게 예측할 수 있었으며, KSCL-95의 22가지 하위 범주 중 긍정왜곡, 우울, 불안, 강박, PTSD, 정신증, 스트레 스 취약성, 대인민감, 낮은 조절을 유의수준에서 개별적으로 예측하였다. 이러한 연구 결과는 성격 검사가 정신병리의 심 각도에 대한 선별 도구로 활용될 수 있고 예방 및 조기 개입 전략을 구현하는 데 활용될 수 있음을 시사한다.
        4,300원
        12.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 늘어나고 있는 이상 기상 현상으로 산사태 위험이 점차 증가하고 있다. 산사태는 막대한 인명 피해와 재산 피해를 초래할 수 있기에 이러한 위험을 사전에 평가함은 매우 중요하다. 최근 기술 발전으로 인해 능동형 원격탐사 방법을 사용하여 더 정확하고 상세한 지표 변위 및 강수 데이터를 얻을 수 있게 되었다. 그러나 이러한 데이터를 활용하여 산사태 예측 모델을 개발하는 연구는 찾기 힘들다. 따라서 본 연구에서는 합성개구레이더 간섭법(InSAR)을 사용한 지표 변위 자료와 하이브리드 고도면 강우(HSR) 추정 기법을 통한 강수 정보를 활용하여 산사태 민감도를 예측하는 기계학습 모델을 제시하고 있다. 나아가 기계학습의 블랙박스 문제를 극복할 수 있는 해석가능한 기계학습 방법인 SHAP을 이용하여 산사태 민감도의 영향 변수에 대한 중요도를 체계적으로 평가하였다. 경상북도 울진군을 대상으로 사례 연구를 수행한 결과, XGBoost가 가장 좋은 예측 성능을 보이며, 도로로부터의 거리, 지표 고도, 일 최대 강우 강도, 48시간 선행 누적 강우량, 사면 경사, 지형습윤지수, 단층으로 부터의 거리, 경사도, 지표 변위, 하천으로부터의 거리가 산사태 예측에 영향을 미치는 주요 변수로 밝혀졌다. 특히, 능동형 원격탐사를 통해 얻은 자료인 강우 강도와 지표 변위의 절댓값이 높을수록 산사태 발생 확률이 높음을 확인하였다. 본 연구는 능동형 원격탐사 자료의 산사태 민감도 연구에서의 활용 가능성을 실증적으로 보여주고 있으며, 해당 자료를 바탕으로 시공간적 으로 변하는 산사태 민감도를 도출함으로써 향후 산사태 민감도 모니터링에 효과적으로 활용될 수 있을 것으로 기대된다.
        6,000원
        13.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 돼지 간 거리(PD), 돈사 내 상대 습도(RRH), 돈사 내 이산화탄소(RCO2) 세 가지 변수를 사용하여, 네 개의 데이터 세트를 구성하고, 이를 다중 선형 회귀(MLR), 서포트 벡터 회귀(SVR) 및 랜덤 포레스트 회귀(RFR) 세 가지 모델 기계학습(ML)에 적용하여, 돈사 내 온도(RT)를 예측하고자 한다. 2022년 10월 5일부터 11월 19일까지 실험을 진행하였다. Hik-vision 2D카메라를 사용하여, 돈사 내 영상을 기록하였다. 이후 ArcMap 프로그램을 사용하여, 돈사 내 영상에서 추출한 이미지 안 돼지의 PD를 계산하였다. 축산환경관리시스템(LEMS) 센서를 사용하여, RT, RRH 및 RCO2를 측정하였다. 연구 결과 각 변수 간 상관분석 시 RT와 PD 간의 강한 양의 상관관계가 나타났다(r > 0.75). 네 가지 데이터 세트 중 데이터 세트 3을 사용한 ML 모델이 높은 정확도가 나타났으며, 세 가지 회귀 모델 중에서 RFR 모델이 가장 우수한 성능을 보였다.
        4,000원
        16.
        2024.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, the magnetocaloric effect and transition temperature of bulk metallic glass, an amorphous material, were predicted through machine learning based on the composition features. From the Python module ‘Matminer’, 174 compositional features were obtained, and prediction performance was compared while reducing the composition features to prevent overfitting. After optimization using RandomForest, an ensemble model, changes in prediction performance were analyzed according to the number of compositional features. The R2 score was used as a performance metric in the regression prediction, and the best prediction performance was found using only 90 features predicting transition temperature, and 20 features predicting magnetocaloric effects. The most important feature when predicting magnetocaloric effects was the ‘Fe’ compositional ratio. The feature importance method provided by ‘scikit-learn’ was applied to sort compositional features. The feature importance method was found to be appropriate by comparing the prediction performance of the Fe-contained dataset with the full dataset.
        4,000원
        17.
        2024.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Existing reinforced concrete (RC) building frames constructed before the seismic design was applied have seismically deficient structural details, and buildings with such structural details show brittle behavior that is destroyed early due to low shear performance. Various reinforcement systems, such as fiber-reinforced polymer (FRP) jacketing systems, are being studied to reinforce the seismically deficient RC frames. Due to the step-by-step modeling and interpretation process, existing seismic performance assessment and reinforcement design of buildings consume an enormous amount of workforce and time. Various machine learning (ML) models were developed using input and output datasets for seismic loads and reinforcement details built through the finite element (FE) model developed in previous studies to overcome these shortcomings. To assess the performance of the seismic performance prediction models developed in this study, the mean squared error (MSE), R-square (R2), and residual of each model were compared. Overall, the applied ML was found to rapidly and effectively predict the seismic performance of buildings according to changes in load and reinforcement details without overfitting. In addition, the best-fit model for each seismic performance class was selected by analyzing the performance by class of the ML models.
        4,200원
        18.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        New motor development requires high-speed load testing using dynamo equipment to calculate the efficiency of the motor. Abnormal noise and vibration may occur in the test equipment rotating at high speed due to misalignment of the connecting shaft or looseness of the fixation, which may lead to safety accidents. In this study, three single-axis vibration sensors for X, Y, and Z axes were attached on the surface of the test motor to measure the vibration value of vibration. Analog data collected from these sensors was used in classification models for anomaly detection. Since the classification accuracy was around only 93%, commonly used hyperparameter optimization techniques such as Grid search, Random search, and Bayesian Optimization were applied to increase accuracy. In addition, Response Surface Method based on Design of Experiment was also used for hyperparameter optimization. However, it was found that there were limits to improving accuracy with these methods. The reason is that the sampling data from an analog signal does not reflect the patterns hidden in the signal. Therefore, in order to find pattern information of the sampling data, we obtained descriptive statistics such as mean, variance, skewness, kurtosis, and percentiles of the analog data, and applied them to the classification models. Classification models using descriptive statistics showed excellent performance improvement. The developed model can be used as a monitoring system that detects abnormal conditions of the motor test.
        4,000원
        19.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, machine learning models were applied to predict the seismic response of steel frame structures. Both geometric and material nonlinearities were considered in the structural analysis, and nonlinear inelastic dynamic analysis was performed. The ground acceleration response of the El Centro earthquake was applied to obtain the displacement of the top floor, which was used as the dataset for the machine learning methods. Learning was performed using two methods: Decision Tree and Random Forest, and their efficiency was demonstrated through application to 2-story and 6-story 3-D steel frame structure examples.
        4,000원
        20.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Machine learning is widely applied to various engineering fields. In structural engineering area, machine learning is generally used to predict structural responses of building structures. The aging deterioration of reinforced concrete structure affects its structural behavior. Therefore, the aging deterioration of R.C. structure should be consider to exactly predict seismic responses of the structure. In this study, the machine learning based seismic response prediction model was developed. To this end, four machine learning algorithms were employed and prediction performance of each algorithm was compared. A 3-story coupled shear wall structure was selected as an example structure for numerical simulation. Artificial ground motions were generated based on domestic site characteristics. Elastic modulus, damping ratio and density were changed to considering concrete degradation due to chloride penetration and carbonation, etc. Various intensity measures were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks and extreme gradient boosting algorithms present good prediction performance.
        4,000원
        1 2 3 4 5