Many school buildings are vulnerable to earthquakes because they were built before mandatory seismic design was applied. This study uses machine learning to develop an algorithm that rapidly constructs an optimal reinforcement scheme with simple information for non-ductile reinforced concrete school buildings built according to standard design drawings in the 1980s. We utilize a decision tree (DT) model that can conservatively predict the failure type of reinforced concrete columns through machine learning that rapidly determines the failure type of reinforced concrete columns with simple information, and through this, a methodology is developed to construct an optimal reinforcement scheme for the confinement ratio (CR) for ductility enhancement and the stiffness ratio (SR) for stiffness enhancement. By examining the failure types of columns according to changes in confinement ratio and stiffness ratio, we propose a retrofit scheme for school buildings with masonry walls and present the maximum applicable stiffness ratio and the allowable range of stiffness ratio increase for the minimum and maximum values of confinement ratio. This retrofit scheme construction methodology allows for faster construction than existing analysis methods.
Due to seismically deficient details, existing reinforced concrete structures have low lateral resistance capacities. Since these building structures suffer an increase in axial loads to the main structural element due to the green retrofit (e.g., energy equipment/device, roof garden) for CO2 reduction and vertical extension, building capacities are reduced. This paper proposes a machine-learning-based methodology for allowable ranges of axial loading ratio to reinforced concrete columns using simple structural details. The methodology consists of a two-step procedure: (1) a machine-learning-based failure detection model and (2) column damage limits proposed by previous researchers. To demonstrate this proposed method, the existing building structure built in the 1990s was selected, and the allowable range for the target structure was computed for exterior and interior columns.
Dynamic responses of nuclear power plant structure subjected to earthquake loads should be carefully investigated for safety. Because nuclear power plant structure are usually constructed by material of reinforced concrete, the aging deterioration of R.C. have no small effect on structural behavior of nuclear power plant structure. Therefore, aging deterioration of R.C. nuclear power plant structure should be considered for exact prediction of seismic responses of the structure. In this study, a machine learning model for seismic response prediction of nuclear power plant structure was developed by considering aging deterioration. The OPR-1000 was selected as an example structure for numerical simulation. The OPR-1000 was originally designated as the Korean Standard Nuclear Power Plant (KSNP), and was re-designated as the OPR-1000 in 2005 for foreign sales. 500 artificial ground motions were generated based on site characteristics of Korea. Elastic modulus, damping ratio, poisson’s ratio and density were selected to consider material property variation due to aging deterioration. Six machine learning algorithms such as, Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Artificial Neural Networks (ANN), eXtreme Gradient Boosting (XGBoost), were used t o construct seispic response prediction model. 13 intensity measures and 4 material properties were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks present good prediction performance considering aging deterioration.
최근 늘어나고 있는 이상 기상 현상으로 산사태 위험이 점차 증가하고 있다. 산사태는 막대한 인명 피해와 재산 피해를 초래할 수 있기에 이러한 위험을 사전에 평가함은 매우 중요하다. 최근 기술 발전으로 인해 능동형 원격탐사 방법을 사용하여 더 정확하고 상세한 지표 변위 및 강수 데이터를 얻을 수 있게 되었다. 그러나 이러한 데이터를 활용하여 산사태 예측 모델을 개발하는 연구는 찾기 힘들다. 따라서 본 연구에서는 합성개구레이더 간섭법(InSAR)을 사용한 지표 변위 자료와 하이브리드 고도면 강우(HSR) 추정 기법을 통한 강수 정보를 활용하여 산사태 민감도를 예측하는 기계학습 모델을 제시하고 있다. 나아가 기계학습의 블랙박스 문제를 극복할 수 있는 해석가능한 기계학습 방법인 SHAP을 이용하여 산사태 민감도의 영향 변수에 대한 중요도를 체계적으로 평가하였다. 경상북도 울진군을 대상으로 사례 연구를 수행한 결과, XGBoost가 가장 좋은 예측 성능을 보이며, 도로로부터의 거리, 지표 고도, 일 최대 강우 강도, 48시간 선행 누적 강우량, 사면 경사, 지형습윤지수, 단층으로 부터의 거리, 경사도, 지표 변위, 하천으로부터의 거리가 산사태 예측에 영향을 미치는 주요 변수로 밝혀졌다. 특히, 능동형 원격탐사를 통해 얻은 자료인 강우 강도와 지표 변위의 절댓값이 높을수록 산사태 발생 확률이 높음을 확인하였다. 본 연구는 능동형 원격탐사 자료의 산사태 민감도 연구에서의 활용 가능성을 실증적으로 보여주고 있으며, 해당 자료를 바탕으로 시공간적 으로 변하는 산사태 민감도를 도출함으로써 향후 산사태 민감도 모니터링에 효과적으로 활용될 수 있을 것으로 기대된다.
본 연구는 돼지 간 거리(PD), 돈사 내 상대 습도(RRH), 돈사 내 이산화탄소(RCO2) 세 가지 변수를 사용하여, 네 개의 데이터 세트를 구성하고, 이를 다중 선형 회귀(MLR), 서포트 벡터 회귀(SVR) 및 랜덤 포레스트 회귀(RFR) 세 가지 모델 기계학습(ML)에 적용하여, 돈사 내 온도(RT)를 예측하고자 한다. 2022년 10월 5일부터 11월 19일까지 실험을 진행하였다. Hik-vision 2D카메라를 사용하여, 돈사 내 영상을 기록하였다. 이후 ArcMap 프로그램을 사용하여, 돈사 내 영상에서 추출한 이미지 안 돼지의 PD를 계산하였다. 축산환경관리시스템(LEMS) 센서를 사용하여, RT, RRH 및 RCO2를 측정하였다. 연구 결과 각 변수 간 상관분석 시 RT와 PD 간의 강한 양의 상관관계가 나타났다(r > 0.75). 네 가지 데이터 세트 중 데이터 세트 3을 사용한 ML 모델이 높은 정확도가 나타났으며, 세 가지 회귀 모델 중에서 RFR 모델이 가장 우수한 성능을 보였다.
In this study, the magnetocaloric effect and transition temperature of bulk metallic glass, an amorphous material, were predicted through machine learning based on the composition features. From the Python module ‘Matminer’, 174 compositional features were obtained, and prediction performance was compared while reducing the composition features to prevent overfitting. After optimization using RandomForest, an ensemble model, changes in prediction performance were analyzed according to the number of compositional features. The R2 score was used as a performance metric in the regression prediction, and the best prediction performance was found using only 90 features predicting transition temperature, and 20 features predicting magnetocaloric effects. The most important feature when predicting magnetocaloric effects was the ‘Fe’ compositional ratio. The feature importance method provided by ‘scikit-learn’ was applied to sort compositional features. The feature importance method was found to be appropriate by comparing the prediction performance of the Fe-contained dataset with the full dataset.
Existing reinforced concrete (RC) building frames constructed before the seismic design was applied have seismically deficient structural details, and buildings with such structural details show brittle behavior that is destroyed early due to low shear performance. Various reinforcement systems, such as fiber-reinforced polymer (FRP) jacketing systems, are being studied to reinforce the seismically deficient RC frames. Due to the step-by-step modeling and interpretation process, existing seismic performance assessment and reinforcement design of buildings consume an enormous amount of workforce and time. Various machine learning (ML) models were developed using input and output datasets for seismic loads and reinforcement details built through the finite element (FE) model developed in previous studies to overcome these shortcomings. To assess the performance of the seismic performance prediction models developed in this study, the mean squared error (MSE), R-square (R2), and residual of each model were compared. Overall, the applied ML was found to rapidly and effectively predict the seismic performance of buildings according to changes in load and reinforcement details without overfitting. In addition, the best-fit model for each seismic performance class was selected by analyzing the performance by class of the ML models.
New motor development requires high-speed load testing using dynamo equipment to calculate the efficiency of the motor. Abnormal noise and vibration may occur in the test equipment rotating at high speed due to misalignment of the connecting shaft or looseness of the fixation, which may lead to safety accidents. In this study, three single-axis vibration sensors for X, Y, and Z axes were attached on the surface of the test motor to measure the vibration value of vibration. Analog data collected from these sensors was used in classification models for anomaly detection. Since the classification accuracy was around only 93%, commonly used hyperparameter optimization techniques such as Grid search, Random search, and Bayesian Optimization were applied to increase accuracy. In addition, Response Surface Method based on Design of Experiment was also used for hyperparameter optimization. However, it was found that there were limits to improving accuracy with these methods. The reason is that the sampling data from an analog signal does not reflect the patterns hidden in the signal. Therefore, in order to find pattern information of the sampling data, we obtained descriptive statistics such as mean, variance, skewness, kurtosis, and percentiles of the analog data, and applied them to the classification models. Classification models using descriptive statistics showed excellent performance improvement. The developed model can be used as a monitoring system that detects abnormal conditions of the motor test.
In this paper, machine learning models were applied to predict the seismic response of steel frame structures. Both geometric and material nonlinearities were considered in the structural analysis, and nonlinear inelastic dynamic analysis was performed. The ground acceleration response of the El Centro earthquake was applied to obtain the displacement of the top floor, which was used as the dataset for the machine learning methods. Learning was performed using two methods: Decision Tree and Random Forest, and their efficiency was demonstrated through application to 2-story and 6-story 3-D steel frame structure examples.
Machine learning is widely applied to various engineering fields. In structural engineering area, machine learning is generally used to predict structural responses of building structures. The aging deterioration of reinforced concrete structure affects its structural behavior. Therefore, the aging deterioration of R.C. structure should be consider to exactly predict seismic responses of the structure. In this study, the machine learning based seismic response prediction model was developed. To this end, four machine learning algorithms were employed and prediction performance of each algorithm was compared. A 3-story coupled shear wall structure was selected as an example structure for numerical simulation. Artificial ground motions were generated based on domestic site characteristics. Elastic modulus, damping ratio and density were changed to considering concrete degradation due to chloride penetration and carbonation, etc. Various intensity measures were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks and extreme gradient boosting algorithms present good prediction performance.
운량은 천체 관측을 지속하는 데에 중요한 요소 중 하나이다. 과거에는 관측자가 날씨를 직접 판단할 수밖에 없 었으나, 원격 및 자동 관측 시스템의 개발로 관측자의 역할이 상대적으로 줄어들었다. 또한 구름의 다양한 형태와 빠른 이동 때문에 자동으로 운량을 판단하는 것은 쉽지 않다. 이 연구에서는 기계학습 기반의 파이썬 모듈인 “cloudynight” 을 밀양아리랑우주천문대의 전천 영상에 적용하여 운량을 모니터링하는 프로그램을 개발하였다. 전천 영상을 하위 영역 으로 나누어 각 39,996개 영역의 16개의 특징을 학습하여 기계학습 모델을 생성하였다. 검증 표본에서 얻은 F1 점수는 0.97로, 기계학습 모델이 우수한 성능을 가짐을 보여준다. 운량(“Cloudiness”)은 전체 하위 영역 개수 중 구름으로 식별 된 하위 영역 개수의 비율로 계산하며, 운량이 지난 30분 동안 0.6을 초과할 때 관측을 중단하도록 자동 관측 프로그 램 규칙을 정하였다. 이 규칙을 따를 때, 기계학습 모델이 운량을 오판하여 관측에 영향을 미치는 경우는 거의 발생하 지 않았다. 본 기계학습 모델을 통하여, 밀양아리랑우주천문대 0.7 m 망원경의 성공적인 자동 관측을 기대한다.
작물의 스트레스 조기 진단은 농업에 있어 빠른 대응을 가능하게 해 피해를 경감시킬 수 있어 중요한 기술이다. 기존의 스트레스 진단이 가진 파괴적인 형식의 시료 채집과 양분 분석에 많은 노동력을 필요로 한다는 단점 극복을 위해 새로운 기술 개발이 필요하다. 미래에는 대단위 영상을 이용한 생육 진단 기술에 대한 수요가 높아질 것으로 예상되어 이를 이용한 연구를 진행하였다. 본 연구는 2023년 경상남도 밀양시에 위치한 국립식량과학원 실험 포장에서 수행되었으며, 무인항공기(UAV)를 이용하여 양분 결핍 처리(관행시비, 질소 결핍, 인 결핍, 칼륨 결핍, 무비)에 따른 벼의 생육을 조사했다. UAV를 이용해 생육 기간 중 총 6회에 걸쳐 포장을 촬영하였고, 영상을 기반으로 11개의 식생 지수를 산출하여 기계학습을 통해 양분 결핍을 진단하는 모델을 구축하여 평가했다. 연구 결과에 따르면, 엽록소 함량과 관련된 지수인 NDRE (Normalized Difference Red Edge)가 가장 높은 중요도를 나타내어 벼의 양분 상태를 효과적으로 진단하는 데 유용하다는 것을 확인하였다. 6개의 각 단계별로 모델을 평가하였을 때 모든 단계에서 accuracy가 0.7 이상으로 나타났다. 조기 진단을 위해 첫 촬영 날짜인 7월 5일의 자료로 모델을 만들어 다른 회차에 적용하여 모델의 성능을 평가한 결과, 5개의 모든 단계에서 0.9 이상의 accuracy를 얻었다. 종합적으로, UAV 영상 기반의 식생 지수를 활용한 양분 결핍 진단은 벼의 생육을 조기에 예측하는 데 효과적이며, 이는 정밀 농업 분야에서 시간과 노동을 절감하고 양분 관리를 개선하는 데 도움이 될 것으로 기대된다.
Existing reinforced concrete buildings with seismically deficient column details affect the overall behavior depending on the failure type of column. This study aims to develop and validate a machine learning-based prediction model for the column failure modes (shear, flexure-shear, and flexure failure modes). For this purpose, artificial neural network (ANN), K-nearest neighbor (KNN), decision tree (DT), and random forest (RF) models were used, considering previously collected experimental data. Using four machine learning methodologies, we developed a classification learning model that can predict the column failure modes in terms of the input variables using concrete compressive strength, steel yield strength, axial load ratio, height-to-dept aspect ratio, longitudinal reinforcement ratio, and transverse reinforcement ratio. The performance of each machine learning model was compared and verified by calculating accuracy, precision, recall, F1-Score, and ROC. Based on the performance measurements of the classification model, the RF model represents the highest average value of the classification model performance measurements among the considered learning methods, and it can conservatively predict the shear failure mode. Thus, the RF model can rapidly predict the column failure modes with simple column details.
The purpose of this study was to examine the use of machine translation by Uzbek-speaking Korean learners, focusing on their usage patterns, attitudes, perceptions, and expectations, as well as identifying the educational implications of using machine translation. An online survey, lasting two weeks, involved 85 Korean language learners from universities in Korea and Uzbekistan. The main findings indicated a high reliance on machine translation for Korean language learning, with the majority of respondents using machine translations to find accurate vocabulary and expressions. Regarding their attitudes towards machine translation, learners mainly utilized it for literal communication, reading, and writing, and were generally satisfied with them, especially as tools for learning spellings and pronunciations. The use of machine translation significantly influenced learners’ confidence, interest in learning, and anxiety reduction. In terms of perception, learners found machine translation effective for learning Korean vocabulary, expressions, and writing, but also perceived machine translators as sources of stress and anxiety. Expectations for using machine translation were high for completing tasks in vocabulary, expression, and writing, but low for improving grammar skills and producing error-free Korean expressions.
In light of the expanding use of technology in education, we attempted to analyze how Korean college students perceived the use of Machine Translation (MT) tools in the classroom. Specifically, this study attempted to explore students’ perceptions of their ability to use MT tools and to measure the reliability of the MT-generated output, along with measuring students’ general sense of confidence in English learning. This research analyzed 183 EFL college students’ responses to an online survey, and a one-way ANOVA was used to test for the differences in the averages of three groups. The results of data analysis revealed that 1) Among beginners, intermediate learners, and advanced learners, those self-identifying as advanced had the highest scores on all the factors measured.; 2) There was a significant mean difference in students’ perceptions of the ability to use MT tools, their beliefs regarding MT’s effectiveness as a learning tool, and affective attitudes towards the use of MT tools between beginner and advanced groups. Based on the findings, pedagogical implications for the effective use of MT tools in the Korean EFL classrooms, and suggestions for future research were presented.
PURPOSES : To enhance the accuracy of predicting the compressive strength of practical concrete mixtures, this study aimed to develop a machine learning model by utilizing the most commonly employed curing age, specifically, the 28-day curing period. The training dataset consisted of concrete mixture sample data at this curing age, along with samples subjected to a total load not exceeding 2,350 kg. The objective was to train a machine learning model to create a more practical predictive model suitable for real-world applications. METHODS : Three machine learning models—random forest, gradient boosting, and AdaBoost—were selected. Subsequently, the prepared dataset was used to train the selected models. Model 1 was trained using concrete sample data from the 28th curing day, followed by a comprehensive analysis of the results. For Model 2, training was conducted using data from the 28th day of curing, focusing specifically on instances where the total load was 2,350 kg or less. The results were systematically analyzed to determine the most suitable machine learning model for predicting the compressive strength of concrete. RESULTS : The machine learning model trained on concrete sample data from the 28th day of curing with a total weight of 2,350 kg or less exhibited higher accuracy than the model trained on weight-unrestricted data from the 28th day of curing. The models were evaluated in terms of accuracy, with the gradient boosting, AdaBoost, and random forest models demonstrating high accuracy, in that order. CONCLUSIONS : Machine learning models trained using concrete mix data based on practical and real-world scenarios demonstrated a higher accuracy than models trained on impractical concrete mix data. This case illustrates the significance of not only the quantity but also the quality of the data during the machine learning training process. Excluding outliers from the data appears to result in better accuracy for machine learning models. This underscores the importance of using high-quality and practical mixed concrete data for reliable and accurate model training.
PURPOSES : In this study, an optimal model for compressive strength prediction was derived by learning and directly comparing several machine learning models based on the same data. METHODS : Approximately 478 pieces of concrete compressive strength data were obtained to compare the performance of the machine learning models. In addition, five machine learning models were trained based on the obtained data. The performance of the learned model was compared using three performance indicators. Finally, the performance of the model trained using additional data was reviewed. RESULTS : As a result of comparing the performance of machine learning models, the XGB(eXtra Gradient Boost) model showed the best performance. In addition, as a result of the verification based on additional data, highly reliable results can be obtained if the XGB model is used to predict the compressive strength of concrete. CONCLUSIONS : If a concrete strength prediction model is derived based on a machine learning model, a highly reliable model can be derived.