검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 14

        1.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        대한민국 기상청에서 사용하고 있는 UM (Unified Model, UM) 모델의 국지예측시스템(Local Data Assimilation and Prediction System, LDAPS)은 수치모델 모의 시 대기경계층 유형에 따라 물리과정을 다르게 계산하기 때문에 이 과정을 검증하는 것은 모델의 정확도 향상에 중요하다. 따라서, 본 연구에서는 수치모델의 대기경계층 유형을 관측자료 를 기반으로 검증하였다. 관측자료를 기반으로 대기경계층 유형을 분류하기 위해서 보성 표준기상관측소에서 수행한 여름철 집중관측자료(라디오존데, 플럭스관측장비, 도플러 라이다, 운고계)를 활용하였으며, 2019년 6월 18일 부터 8월 17일 까지 61일 동안에 총 201회의 관측자료를 분석하였다. 또한 관측자료와 수치모델 결과가 다른 경우를 보면, 관측자료를 기반으로 한 대기경계층 유형 분류 결과에서 2유형으로 분류되는 사례가 수치모델에서는 1유형으로 분류된 사례가 53회로 가장 많이 나타났다. 그 다음으로는 관측자료를 기반으로 한 대기경계층 유형 분류 결과에서 5유형과 6유형 으로 분류되는 사례가 수치모델에서는 3유형으로 분류된 사례가 많이 나타났다(각각 24회, 15회). 관측결과와 수치모델 모의 결과가 일치하지 않은 사례는 모두 층적운 접합 여부 및 적운 모의 등 수치모델의 구름물리 부분의 모의 성능에 기인하여 발생한 것이라고 분석된다. 따라서, 대기경계층 유형 분류의 구름물리과정의 모의 정확도를 개선하면 수치모델 성능이 향상 될 것으로 판단된다.
        4,000원
        2.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is intended to investigate that it is possible to analyze the public awareness and satisfaction of the weather forecast service provided by the Korea Meteorological Administration (KMA) through social media data as a way to overcome limitations of the questionnaire-based survey in the previous research. Sentiment analysis and association rule mining were used for Twitter data containing opinions about the weather forecast service. As a result of sentiment analysis, the frequency of negative opinions was very high, about 75%, relative to positive opinions because of the nature of public services. The detailed analysis shows that a large portion of users are dissatisfied with precipitation forecast and that it is needed to analyze the two kinds of error types of the precipitation forecast, namely, ‘False alarm’ and ‘Miss’ in more detail. Therefore, association rule mining was performed on negative tweets for each of these error types. As a result, it was found that a considerable number of complaints occurred when preventive actions were useless because the forecast predicting rain had a ‘False alarm’ error. In addition, this study found that people’s dissatisfaction increased when they experienced inconveniences due to either unpredictable high winds and heavy rains in summer or severe cold in winter, which were missed by weather forecast. This study suggests that the analysis of social media data can provide detailed information about forecast users’ opinion in almost real time, which is impossible through survey or interview.
        4,000원
        3.
        2013.05 구독 인증기관 무료, 개인회원 유료
        This paper presents a development process of a forecast and monitoring system for a photovoltaic (PV) solar plant. PV solar system is one of sustainable resource of energy. So, Korean government encourages businessmen to build a PV solar plant. Renewable Portfolio Standard (RPS) system is one of encouraging policies. Most RPS businessmen use monitoring system for a PV solar plant and they need an accurate forecast of power generation for business purpose. Therefore we propose an estimating algorithm of power for a PV solar plant using weather forecast. Proposed algorithm is implemented in a forecast and monitoring system and it works better than existing estimating methods.
        4,000원
        4.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        기상 예보는 에너지 산업과 같은 다양한 산업 활동에 필수적인 정보를 제공한다. 본 연구의 목적은 에너지 산업을 대상으로 장기 기상 예보에 활용될 수 있는 GIS 기반의 프로토타입 시스템을 개발하는 것이다. 이를 위해 먼저 기상 및 기후 정보의 활용에 있어 GIS가 갖는 함의를 살펴보았다. 이어 현재 기상청에서 제공 중인 장기 예보 서비스에 대한 현황 분석 등을 토대로 활용 시스템의 발전 방향을 논의하였다. 여기에서는 에너지 산업을 고려하여 정보 자체의 발전 방안과 정보의 서비스 방식에 대한 개선 방안을 함께 검토하였다. 이를 토대로 장기 예보 정보의 활용을 위한 프로토타입 시스템을 데스크톱 GIS를 기반으로 개발하였다. 본 연구에서 개발된 시스템을 통해 GIS는 장기 예보 정보의 관리에서 서비스까지의 전 과정에서 매우 효과적이고 효율적인 기반이 될 수 있음을 확인하였다.
        4,900원
        5.
        2005.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        한반도 남서해안에 위치한 흑산도 고층관측이 2003년 6월 1일부터 실시되고 있다. 이러한 흑산도 관측자료에 의한 수치예보개선효과를 보기 위하여 광주의 관측자료와 비교 분석하였다. 분석에는 MM5를 기본으로 제작한 호남지방 고밀도 예측시스템을 이용하였다. 먼저 지표면 마찰과 현열플러스의 차이에 의하여 광주와 흑산도의 바람장과 온도장은 다르게 나타났으며, 광주와 흑산도의 자료를 모두 동화시킨 수치예측 바람장과 기상장이 관측과 제일 잘 일치하였다. 강수면에서 비록 강수량은 과소평가를 하고 있으나, 강수시간과 강수구역은 흑산도자료를 포함하여 자료동화를 시킨 경우 관측과 유사하게 나타났다.
        4,300원
        6.
        2018.11 KCI 등재 서비스 종료(열람 제한)
        Numerical experiments were carried out to investigate the effect of data assimilation of observational data on weather and PM (particulate matter) prediction. Observational data applied to numerical experiment are aircraft observation, satellite observation, upper level observation, and AWS (automatic weather system) data. In the case of grid nudging, the prediction performance of the meteorological field is largely improved compared with the case without data assimilations because the overall pressure distribution can be changed. So grid nudging effect can be significant when synoptic weather pattern strongly affects Korean Peninsula. Predictability of meteorological factors can be expected to improve through a number of observational data assimilation, but data assimilation by single data often occurred to be less predictive than without data assimilation. Variation of air pressure due to observation nudging with high prediction efficiency can improve prediction accuracy of whole model domain. However, in areas with complex terrain such as the eastern part of the Korean peninsula, the improvement due to grid nudging were only limited. In such cases, it would be more effective to aggregate assimilated data.
        7.
        2018.10 KCI 등재 서비스 종료(열람 제한)
        본 연구의 목적은 기상자료(강수량, 최고기온, 최저기온, 평균기온, 평균풍속) 기반의 다중선형 회귀모형을 개발하여 농업용저수지 저수율을 예측 하는 것이다. 나이브 베이즈 분류를 활용하여 전국 1,559개의 저수지를 지리형태학적 제원(유효저수량, 수혜면적, 유역면적, 위도, 경도 및 한발빈도)을 기준으로 30개 군집으로 분류하였다. 각 군집별로, 기상청 기상자료와 한국농어촌공사 저수지 저수율의 13년(2002~2014) 자료를 활용하여 월별 회귀모형을 유도하였다. 저수율의 회귀모형은 결정계수(R2)가 0.76, Nash-Sutcliffe efficiency (NSE)가 0.73, 평균제곱근오차가 8.33%로 나타났다. 회귀모형은 2년(2015~2016) 기간의 기상청 3개월 기상전망자료인 GloSea5 (GS5)를 사용하여 평가되었다. 현재저수율과 평년저수율에 의해 산정되는 저수지 가뭄지수(Reservoir Drought Index, RDI)에 의한 ROC (Receiver Operating Characteristics) 분석의 적중률은 관측값을 이용한 회귀식에서 0.80과 GS5를 이용한 회귀식에서 0.73으로 나타났다. 본 연구의 결과를 이용해 미래 저수율을 전망하여 안정적인 미래 농업용수 공급에 대한 의사결정 자료로 사용할 수 있을 것이다.
        8.
        2018.08 KCI 등재 서비스 종료(열람 제한)
        In this study, to investigate an optimal configuration method for the modeling system, we performed an optimization experiment by controlling the types of compilers and libraries, and the number of CPU cores because it was important to provide reliable model data very quickly for the national air quality forecast. We were made up the optimization experiment of twelve according to compilers (PGI and Intel), MPIs (mvapich-2.0, mvapich-2.2, and mpich-3.2) and NetCDF (NetCDF-3.6.3 and NetCDF-4.1.3) and performed wall clock time measurement for the WRF and CMAQ models based on the built computing resources. In the result of the experiment according to the compiler and library type, the performance of the WRF (30 min 30 s) and CMAQ (47 min 22 s) was best when the combination of Intel complier, mavapich-2.0, and NetCDF-3.6.3 was applied. Additionally, in a result of optimization by the number of CPU cores, the WRF model was best performed with 140 cores (five calculation servers), and the CMAQ model with 120 cores ( five calculation servers). While the WRF model demonstrated obvious differences depending on the number of CPU cores rather than the types of compilers and libraries, CMAQ model demonstrated the biggest differences on the combination of compilers and libraries.
        9.
        2017.11 KCI 등재 서비스 종료(열람 제한)
        기후변화에 대한 우려와 함께 증가하고 있는 극한호우의 피해를 줄이기 위해서는 호우사상 발생 이전에 홍수위험을 미리 파악하여 피해를 대비 할 시간을 늘리는 것이 중요하다. 본 연구에서는 기상청 동네예보를 기반으로 하는 간단한 확률적 홍수위험 산정방법을 제시하였다. 예보강수를 조건부로 하는 6시간 강수량의 확률밀도함수를 이용해 다수의 임의 강수량을 생성한 후 추계학적 모형으로 1시간 단위로 분해하여 간단한 강우-유 출모형에 입력하는 방법을 사용하였다. 보청천 유역의 2017년 주요 강우사상에 제안된 방법을 적용한 결과, 7월 4일 최대홍수량이 나타났던 사상에 대해서는 예보강수를 이용한 모의는 홍수위험을 과소평가하였음을 확인하였고 반면 8월 15일 사상에 대한 동네예보는 강수량을 다소 과대추 정하였지만 홍수위험을 충분히 알릴 수 있는 정보로 평가되었다. 본 연구는 확정론적 모형과 확률론적 강수량을 결합하여 기상예보의 불확실성을 고려한 자료기반 홍수위험도 산정방법을 제시한다.
        10.
        2012.02 서비스 종료(열람 제한)
        재해영향예보는 기존의 기상요소 중심의 예보에서 벗어나 기상상황에 따른 잠재적 사회경제적 위험도 정보를 함께 제공하는 것을 의미한다. 재해영향예보의 제공시 가장 핵심적 사항은 기상상황에 따라 발생가능한 재해를 예측하고 이에 대한 위험도 정보를 적절히 제공하는 것이다. 하지만 단순히 기상정보와 재해정보를 통합하여 제공하는 재해영향 예보는 기상예보가 확률적 성격을 가지고 있으므로 예보의 내용이 실현된 기상상황과 괴리가 보일 때 재해영향예보 소비자에게 혼동을 줄 수 있다. 따라서 효과적인 재해영향예보는 소비자가 비교적 쉽게 예보의 확률적 성격을 이해할 수 있으며 재해기상상황에 대한 위험도 정보를 미리 숙지할 수 있는 것이어야 한다. 그리고 예보에 기반하여 기상재해에 대한 소비자의 합리적 대응이 가능하도록 하는 것이어야 한다. 본 연구에서는 재해영향예보시 재해기상에 대한 예보정보를 과거재해를 발생시킨 재해기상 및 확률기상 정보와 비교하여 제공하여 기상정보의 소비지가 기상현상이 가져오는 위험도를 보다 직관적으로 이해할 수 있도록 하는 방안을 제시하였다.
        11.
        2011.10 KCI 등재 서비스 종료(열람 제한)
        수문학 분야에서 중장기 유출량 예측은 입력변수의 불확실성 등으로 인하여 확률론적 방법을 사용하는 것이 바람직한 것으로 알려져 왔다. 본 연구에서는 금강유역을 대상으로 구성된 바 있는 RRFS-ESP 시스템에 PDF-ratio 방법을 기반으로한 사전처리기능을 장착하여 보다 효율적인 중장기 예측시스템으로의 확장을 시도하여 보았다. 이를 위하여 기상청에서 제공하는 확률기상정보를 이용하여 가중치를 산정하고 이를 기반으로 시나리오별 예측확률을 갱신하였다. 예측결
        12.
        2010.10 KCI 등재 서비스 종료(열람 제한)
        Three meteor-statistical forecasting models - the transfer function model, the time-series autoregressive model and the neural networks model - were tested to develop a daily forecasting model for Jejudo, where the need and demand for wind power forecasting has increased. All the meteorological observation sites in Jejudo have been classified into 6 groups using a cluster analysis. Four pairs of observation sites among them, all having strong wind speed correlation within the same meteorological group, were chosen for a model test. In the development of the wind speed forecasting model for Jejudo, it was confirmed that not only the use a wind dataset at the objective site itself, but the introduction of another wind dataset at the nearest site having a strong wind speed correlation within the same group, would enhance the goodness to fit of the forecasting. A transfer function model and a neural network model were also confirmed to offer reliable predictions, with the similar goodness to fit level.
        13.
        2004.06 KCI 등재 서비스 종료(열람 제한)
        본 논문에서는 월 댐유입량을 예측하는데 있어서 기상예보정보를 활용한 뉴로-퍼지 시스템의 적용성을 검토하였다. 뉴로-퍼지 알고리즘으로 퍼지이론과 신경망이론의 결합형태인 ANFIS(Adaptive Neuro-Fuzzy Inference System)을 이용하여 모형을 구성하였다. ANFIS의 공간분할에 의한 제어규칙의 선정에 있어 퍼지변수가 증가함에 따라 제어규칙이 기하급수적으로 증가하는 단점을 해결하기 위해 퍼지 클러스터링(Fuzzy Clustering)
        14.
        1996.08 KCI 등재 서비스 종료(열람 제한)
        Pusan is the largest coastal city with a population of about four million in Korea. Because of increased and confused traffic, photochemical air pollution become a major urban environmental problem recently. The photo-chemical air pollution weather forecasting method preciser than existing air pollution forecast method has been developed to forecast ozone episode days with meteorological conditions using the data measured at 7 air quality continuous monitoring stations from June to September using 2 years (1994, 1995). The method developed in present study showed higher percentage correct and skill score than existing air pollution forecasting in KMA (Korea Meteorological Administration).