Seismic designs for Korean nuclear power plants (NPPs) under earthquakes’ design basis are noticed due to the recent earthquake events in Korea and Japan. Japan has developed the technologies and experiences of the NPPs through theoretical research and experimental verification with extensively accumulated measurement data. This paper describes the main features of the design-time history complying with the Japanese seismic design standard. Proper seed motions in the earthquake catalog are used to generate one set of design time histories. A magnitude and epicentral distance specify the amplitude envelope function configuring the shape of the earthquake. Cumulative velocity response spectral values of the design time histories are compared and checked to the target response spectra. Spectral accelerations of the time histories and the multiple-damping target response spectra are also checked to exceed. The generated design time histories are input to the reactor building seismic analyses with fixed-base boundary conditions to calculate the seismic responses. Another set of design time histories is generated to comply with Korean seismic design procedures for NPPs and used for seismic input motions to the same reactor containment building seismic analyses. The responses at the dome apex of the building are compared and analyzed. The generated design time histories will be also applied to subsequent seismic analyses of other Korean standard NPP structures.
Current seismic design provisions such as ASCE 7-10 provide criteria for selecting ground motions for conducting response history analysis. This study is the sequel of a companion paper (I – Ground Motion Selection) for assessment of the ASCE 7-10 criteria. To assess of the ASCE 7-10 criteria, nonlinear response history analyses of twelve single degree of freedom (SDF) systems and one multi-degree of freedom (MDF) system are conducted in this study. The results show that the target seismic demands for SDF can be predicted using the mean seismic demands over seven and ten ground motions selected according to the proposed method within an error of 30% and 20%, respectively
For estimating the seismic demand of buildings, most seismic design provisions permit conducting linear and nonlinear response history analysis. In order to obtain reliable results from response history analyses, a proper selection of input ground motions is required. In this study, an accurate algorithm for selecting and scaling ground motions is proposed, which satisfies the ASCE 7-10 criteria. In the proposed algorithm, a desired number of ground motions are sequentially scaled and selected from a ground motion library without iterations.
After the Gyeong-ju 9.12 earthquake, we found the necessity of seismic design of nonstructural element is important to reduce damages in view of properties and economic losses. This study focused on the investigation of damages including both properties and human beings. It was found that most of the damages are leaking of water pipe line, rupture of glasses, spalling of roof finishing, cracks of building, and falling from roof. It was also found that the seismic design force of nonstructural elements is taking account into the natural periods, amplification factors, response modification factors to forsee inelastic behaviors. From this studies, it is recommended that more studies are necessary on the seismic design force of nonstructural element.
In the companion papers (I, II), site-specific response analyses were performed at more than 300 domestic sites and a new site classification system and design response spectra (DRS) were proposed using the results of the site-specific response analyses. In this paper, the proposed site classification system and the design response spectra are compared with those in other seismic codes and verified by different methods. Firstly, the design response spectra are compared with the design response spectra in Eurocode 8, KBC 2016 and MOCT 1997 to estimate quantitative differences and general trends. Secondly, site-specific response analyses are carried out using VS-profiles obtained using field seismic tests and the results are compared with the proposed DRS in order to reduce the uncertainty in using the SPT-N value in site-specific response analyses in the companion paper (I). In addition, site coefficients from real earthquake records measured in Korean peninsula are used to compare with the proposed site coefficients. Finally, dynamic centrifuge tests are also performed to simulate the representative Korean site conditions, such as shallow depth to bedrock and short-period amplification characteristics. The overall results showed that the proposed site classification system and design response spectra reasonably represented the site amplification characteristic of shallow bedrock condition in Korea.
In the companion paper (I – Database and Site Response Analyses), site-specific response analyses were performed at more than 300 domestic sites. In this study, a new site classification system and design response spectra are proposed using results of the site-specific response analyses. Depth to bedrock (H) and average shear wave velocity of soil above the bedrock (VS,Soil) were adopted as parameters to classify the sites into sub-categories because these two factors mostly affect site amplification, especially for shallow bedrock region. The 20 m of depth to bedrock was selected as the initial parameter for site classification based on the trend of site coefficients obtained from the site-specific response analyses. The sites having less than 20 m of depth to bedrock (H1 sites) are sub-divided into two site classes using 260 m/s of VS,Soil while the sites having greater than 20 m of depth to bedrock (H2 sites) are sub-divided into two site classes at VS,Soil equal to 180 m/s. The integration interval of 0.4 ~ 1.5 sec period range was adopted to calculate the long-period site coefficients (Fv) for reflecting the amplification characteristics of Korean geological condition. In addition, the frequency distribution of depth to bedrock reported for Korean sites was also considered in calculating the site coefficients for H2 sites to incorporate sites having greater than 30 m of depth to bedrock. The relationships between the site coefficients and rock shaking intensity were proposed and then subsequently compared with the site coefficients of similar site classes suggested in other codes.
Korea is part of a region of low to moderate seismicity located inside the Eurasian plate with bedrock located at depths less than 30 m. However, the spectral acceleration obtained from site response analyses based on the geologic conditions of inland areas of the Korean peninsula are significantly different from the current Korean seismic code. Therefore, suitable site classification scheme and design response spectra based on local site conditions in the Korean peninsula are required to produce reliable estimates of earthquake ground motion. In this study, site-specific response analyses were performed at more than 300 sites with at least 100 sites at each site categories of SC, SD, and SE as defined in the current seismic code in Korea. The process of creating a huge database of input parameters - such as shear wave velocity profiles, normalized shear modulus reduction curves, damping curves, and input earthquake motions - for site response analyses were described. The response spectra and site coefficients obtained from site response analyses were compared with those proposed for the site categories in the current code. Problems with the current seismic design code were subsequently discussed, and the development and verifications of new site classification system and corresponding design response spectra are detailed in companion papers (II-development of new site categories and design response spectra and III-Verifications)
This paper reviews the current seismic design code and research for dynamic earth pressure on retaining structures. Domestic design codes do not clearly define the estimation of dynamic earth pressure and give different comments for seismic coefficient, wall inertia and distribution of dynamic earth pressure using Mononobe-Okabe method. AASHTO has been revised reflecting current research and aims for effective seismic design. Various design codes are analyzed to compare their performance and economic efficiency. The results are used to make improvement of current domestic seismic design code. Further, it is concluded that the experimental investigation is also needed to verify and improve domestic seismic code for dynamic earth pressure.
This study reviews the status and validity of seismic design criteria (SDC) for major facilities in Korea, which are composed of performance criteria and technical standard. Various facilities with different seismic design response spectra are analyzed to identify their seismic performance and necessity of eventual retrofit. The results are used to derive improvement directions of SDC. It is also concluded that the technical standard should be improved after the revision of the performance criteria.
IBC와 KBC의 지반분류는 ft-kips 단위체계를 기본으로 하고, 지반종류를 단일 지반특성값이 아닌 지반특성값 범위로 규정하여 지반종류에 따른 전단파속도와 지반계수들 간의 불명확한 관계 때문에 지반계수의 선형보간이 쉽지 않다. 또한, KBC의 지반분류에서 각 지반종류에 대한 지반특성값 범위가 너무 넓어서 구조기술자들이 다양한 지반의 실제적인 지반계수를 추정하는데 어려움을 격고 있다. 이 연구에서는 SI 단위체계를 고려한 새로운 지반분류체계를KBC등 차세대 내진설계기준을 위해 제안하였고, 제안된 새로운 지반분류에 따라 지반계수들의 선형보간 가능성을 검토하기 위해 F_{a},\;F_{v}, 지반계수들의 비교에 관한 연구를 수행하였다. 연구결과에 의하면, SI 단위체계와 얕게 묻힌기초 밑 30m 지반의 지반특성을 고려한 새로 제안한 지반분류체계를 이용하는 것이 지반계수의 선형보간을 위해서 보다 합리적이고, 설계스펙트럼 가속도계수의 선형보간도 각 지반을 대표하는 전단파속도에 따라 지반계수를 규정함으로써 보다 합리적으로 수행할 수 있다. 연구결과에 따라 KBC 내진설계기준을 위한 새로운 지반분류체계와 선형보간이 가능한 설계스펙트럼 가속도 계수를 제안하였다.
본 논문에서는 국내 162개 지반에 대한 전단파속도 주상도, 기반암 깊이 및 지반의 동적변형특성을 획득하여 등가선형해석을 수행한 후 미국 서부해안지역의 지반 특성과 비교 검토하였다. 검토 결과 국내의 일반적인 특성을 가지는 지반과 미국 서부해안지역의 지반은 기반암 깊이와 고유주기가 매우 다름을 확인하였다. 지진응답 해석 결과 단주기 증폭계수 F_a의 경우 1997 UBC 기준의 값보다 크게 산정되었고, 장주기 증폭계수 F_v는 작게 나타나 국내 지반특성에 적합한 증폭계수는 현재 국내 내진설계기준 값과는 매우 다른 경향을 보였다. 따라서, 증폭계수를 재산정하고 설계응답스펙트럼을 개선해야 할 필요성을 확인하였다. 본 논문에서는 현재 이용되고 있는 내진설계기준과 국내 지반특성과의 차이점 파악에 중점을 두었고, 개선방법에 대한 내용은 동반논문(II 지반분류 개선방법, III 설계응답스펙트럼 개선방법)에서 심도있게 논의하였다.
건물과 교량의 내진설계기준 제정작업이 활발하게 진행되고 있는 반면 탱크구조물에 대한 내진설계기준 제정작업은 아직 초기단계에 머무르고 있는 실정이다 탱크구조물이 지진에 의해 붕괴되는 경우 탱크자체의 파손 및 저장물의 손실에 의한 직접피해보다 저장물의 유출에 의한 피해파급이 더욱 심각한 상황을 초래할 수 있다 따라서 탱크구조물의 내진설계기준에는 탱크구조물의 동적 거동에 대한 해석 및 검토방법은 물론 이러한 피해파급을 최소할 수 잇는 조치가 포함되어야 한다 이논문에서는 원통형 액체저장 강탱크에 대한 내진설계기준의 제정에 필수적으로 고려해야 하는 설계개념과 원칙 해석방법 검토사항 및 피해파급 차단초치를 제시하였다.
액체저장탱크 구조물은 지진에 의해 붕괴되는 경우 구조물의 파손 및 저장물의 손실에 의한 직접피해보다 파급효과(유독물질이나 오염물질의 유출로 지속적인 재산피해 및 환경파괴를 초래함)가 더욱 심각하므로 이러한 직, 간접적 피해를 최소화하기 위한 내진설계기준의 제정이 시급한 과제이다. 본 논문에서는 원통형 액체저장탱크의 내진설계기준을 마련하기 위한 기초작업으로 뉴질랜드지침과 오스트리아지침의 해석방법을 고찰하고, 수치해석 예의 결과를 비교하여 두 지침의 적용타당성 및 문제점을 제시하였다.