자동차운반선의 목포신항 도선 비율이 증가하고 있으며, 선박이 대형화되고 있다. 본 연구에서는 목포신항에 입항하는 7,500 unit 자동차운반선의 안전한 접이안을 위한 예선의 소요마력을 산출하기 위해 풍압력과 유압력을 계산하였다. 목포신항 자동차부두는 부 두로부터 1.0 km 떨어진 지점에서 최대 창조류와 최대 낙조류가 각각 1.6 kts와 0.7 kts이며, 조류가 최대인 조건에서는 ‘낙조류와 서풍’인 경우의 일부 구간에서만 예선사용기준을 만족하고 나머지 상황에서는 만족하지 못하는 것으로 평가되었다. 조류가 0.5 kts인 조건에서는 ‘낙조류와 동풍’인 경우 외력의 방향이 상호 일치하여 작용한 일부 구간에서 예선사용기준을 만족하고, ‘창조류와 서풍’인 경우에는 풍속 18 kts 이상에서 만족하지 못하는 것으로 평가되었다. 또한, 조류가 없는 상황에서는 풍속이 21 kts 이상이 되면 현행 예선사용기준을 만족 하지 못하는 것으로 평가되었다. 따라서 목포신항에 입항하는 70,000 G/T 전후의 대형 자동차운반선은 선박의 접이안 시점을 유속 0.5 kts 미만인 시점으로 계획하거나, 조류가 0.5 kts 이상인 경우와 풍속이 20 kts를 초과할 경우에는 예선의 사용마력을 적절히 상향해야 할 것으 로 판단된다.
부산 신항에 2020년부터 24,000 TEU급 초대형 컨테이너선이 입항하기 시작하였다. 본 연구에서는 부산 신항을 대상으로 24,000 TEU급 초대형 컨테이너선의 안전한 접․이안을 위한 예선의 소요마력을 산출하기 위해 선체에 작용하는 풍압력과 유압력을 계산하였다. 풍속이 10m/s(20kts)일 때, 13,000 TEU 컨테이너선의 경우에는 현행 「부산항 예선 운영세칙」의 예선의 소요마력 기준을 만족하나, 16,000 TEU 및 24,000 TEU 컨테이너선의 경우에는 그 규정을 만족하지 못하는 것으로 나타났다. 따라서, 현행 예선사용 기준의 최대선박인 ‘G/T 15만톤 이상’의 선박 규모를 2단계로 분할하여 예선 사용기준을 상향하는 방안을 제시하였다. 14만톤은 12,100마력, 17만톤은 14,500마력, 23만톤은 18,000마력의 예선이 요구되므로, 15만톤 이상~20만톤 미만은 16,000마력, 20만톤 이상은 18,000마력으로 예선의 사용기준 개선안 을 제시하였다.
대형액화천연가스(Liquefied Natural Gas, LNG)선이 연안 터미널에 정박할 경우 바람과 조류 등의 환경하중에 대응하여 안전을 확보할 수 있는 계류 안전을 위한 케이블 계류력 산정이 필요하다. 이에 기존의 주요 계류역(Mooring Force) 계산방법의 비교 및 분석을 수 행하였다. 비교 및 분석을 통해 석유회사국제해운포럼(Oil Companies International Marine Forum, OCIMF)의 계류설비지침에서 권고하는 계산 방법을 선정하였으며 이를 기반으로 본 논문에서는 실제 대형 LNG선에 적용하여 OCIMF 계류설비지침의 스펙트럼을 이용한 계류줄의 계 류력 계산 사례를 제시하였다. OCIMF 계류설비지침에 따른 스펙트럼으로 계산한 계류력은 환경 외력과 풍동 시험으로 계산한 바람저항 계수 기반 선박 환경 외력과 최대값에서 매우 유사한 결과값을 주는 것을 확인할 수 있었다. OCIMF 계류설비지침에 따른 스펙트럼으로 계산한 계류력에 대한 검증으로 전문 계류력 계산 소프트웨어인 OPTIMOOR 소프트웨어를 사용하여 결과를 비교하였으며 둘의 결과는 매 우 유사한 것을 확인하였다. OPTIMOOR를 사용할 경우에는 각각의 케이블의 인장력을 정밀하게 계산할 수 있어 경제적인 제약이 없을 때 적극적 사용이 추천된다. 결론적으로 OCIMF 계류설비지침에 따른 스펙트럼으로 계산한 계류력이 대형 LNG선의 계류력 계산에 적용함에 문제가 없음을 실제 계산 사례를 통해 검증할 수 있었다.
최근 해상풍력발전기 시장은 에너지 수요 증가, 화석 연료 기반 발전에 대한 의존도 감소와 환경 규제로 인해 향후 5년 내에 빠른 성장이 예상된다. 이러한 상황에 따라서 전 세계적으로 풍력 발전을 가속화하고 있으며, 해상풍력으로 진입하려는 시도가 많아지고 있다. 노르웨이 해상 안전 관리처(PSA: Petroleum Safety Authority)는 운영하는 동안 충돌사고에 대한 충돌에너지가 35 MJ을 견딜 수 있는 안전설계 기준을 요구하고 있다. 따라서 본 연구에서는 북해 해상풍력발전기 설치 단지에 투입되는 해상풍력발전기 설치 선박(WTIV)의 레그 (Leg)와 선박충돌 사고에 대하여 발생 가능한 충돌시나리오에 대해서 비선형 소성붕괴 거동 결과를 바탕으로 레그의 충돌강도평가법을 분석하였다. 분석된 결과로 현재 설계된 기존 선박을 기준으로 요구치인 35 MJ을 만족을 위해서는 200 % 이상의 단면계수 증가가 필 요하고, 이는 현실적인 레그 설계에서는 불가능한 조건으로 판단됐다. 또한, 합리적인 충돌시나리오를 기반으로 한 충돌에너지 기준의 제정이 필요하다.
There is a growing demand for improving the welding quality by reducing the machining error and improving the quality of the machined surface in the beveling for the improvement of the welding groove of the thick plate. For this purpose, it is necessary to develop an automatic beveling machine that adopts a cutting method that replaces the conventional oxygen flame cutting method. In this study, the cutting characteristics according to the machining conditions were evaluated during the face milling applied to the thick plate welding groove. We measured and evaluated cutting force for the machining conditions such as cutting depth, feed rate, chamfer angle, workpiece material, and material of the tool. We expect that this study is used as basic data for designing the stiffness of the spindle, the strength of the fixture and the power of the spindle and the feeding device when designing the automatic beveling machine.
공조시스템의 소음 예측은 주로 NEBB에서 제안한 경험적인 방법에 의해 수행된다. 그러나, NEBB에서 제안한 방법은 선박에만 있는 대형 덕트의 요소를 반영하지 못하므로 선박에 적용하는데 한계가 있다. 본 논문에서는 선박용 대형 덕트의 소음 예측을 위한 전산해석방법을 연구하였다. 경계요소법을 사용하여 대형 덕트의 단위 길이당 소음 감소량에 대한 추정식을 개발하였고, 경계요소법과 전산유체역학을 사용하여 보강재가 설치된 대형 덕트에서의 유동기인소음을 예측하였다. 유입 유속이 10m/s, 보강재의 종류가 200플랫 바인 경우 100 dB 이상의 큰 소음이 발생하는 것을 알 수 있었다. 또한, 경계요소법과 유한요소법을 사용하여 덕트 투과 소음을 예측하였다. 덕트 내부와 외부의 음압 값 차이는 대략 10~15 dB정도 인 것을 알 수 있었다. 이를 통해 조선소에서는 대형 덕트를 포함한 선박 HVAC 소음 예측을 할 수 있을 것으로 기대한다.
For more efficient air-conditioning in large scaled vessels, structure of air inlet room and location of supply fan are very important. In this study, we have modeled an air intake room of large scaled vessels and tried to examine surrounding flow characteristics around supply fan by a numerical simulation using computational fluid dynamics based on three dimensional steady-state Navier-Stokes equation and standard k-ε model. A commercial CFD program, FLUENT, is used on the analysis. Finally, the analysis showed that the supply fan should be located at the inner side rather than outer side of air intake room, which was original design
The latest date, No. 1 YouII was grounded and sunk into the sea at MAMHYUNGJEDO ( South brother Island) in Sep. 21. 1995, and M.V. Sea Prince of V.L.C.C also made a big oil poullution accident owing to Typhoon "Paei" at front sea of Yeu Choun on Jul. 25. 1995. The large or small scall scale of oil poullution accident frequently was occurred about 300-350 cases per ine(1) year. The countries advanced in marine relations like as, nited Kingdom and Japan, have perfect system The country of expert education, training and oil recovery equipments in oil poullution accidents. The large quantity oil skimming ship's basic condition need general skimming ship which was high speed and large quantity skimming ability , and hve to store the recovered oil into tanks This oil skimming shop are composit the skimmer whuch move up and down according to the wace movements, storage tank which storage the recovered oil in after side, transfer pump which transformed from flooding tank to separating tank and separating tank which separated the oil mixtures, Also there are cylindrical floated which keep the auto positing, gate which keep the auto positing, gate which protect and guide the recovering oil from sea and balance weight for skimmer balance. Also there are cylindrical floated which keep the auto positing, gate which protect and guide the recovering oil from sea and balance weight for skimmer balance. The important arrangement is twin arm which moved by two hinge and move te skimming unit by wave movement. In gate of inside, made long wear in the gate bellow position, there are also connected the flexible hose for oil mixtures drop. The separating tank composited with multi-divided bulkhead for ffective oil and sea water separating by settling and flotation principle. As use the above natural princile and equipment, we can remove the large quantity oil by developed oil skimming ship.ming ship.
수산업분야의 생력화와 조업공정의 단축으로 새로운 활로를 개척할 수 있는 방안으로 보조기계들의 유압화 및 대형화에 사용되는 후벽 유압실린더는 작동응력 거동의 분석과 파손예측의 정확성이 강구되어야만 기계고장으로 인한 해난사고의 개연성을 미연에 감소시킬 수 있다. 균일한 내압을 받는 대형선박용 유압실린더를 수치해석적 방법인 경계요소법을 사용하여 각종 응력 해석의 시도는 엄밀해나 유한요소법의 결과와 비교적 양호하게 일치하고 있다. 축대칭 형상에 대한 반경방향 응력이나 원주방향 응력의 BEM 해석결과는 단일절점과 이중절점 모두 최대 25MPa의 압축응력이나 최대 52MPa의 인장응력이 작용하고 있으므로 재료의 허용응력내에서 작동하고 있음을 알 수 있다. 이중절점 형상함수(double node shape function)를 사용하여 원통형 형상의 구조물에 대한 수치계산 결과의 정확도를 높힐수 있었으며 입력데이터의 증가는 오차감소에 기여하였으나 프로그램의 실행시간(run-time)을 증가시켰다. 코너에서의 트랙션벡터의 불연속 현상을 해결하기 위한 이중절점의 사용은 영역 내부해의 안정성을 확보하였고 경계부근에서의 내부해의 발산을 제거하기 위한 이중지수형 적분법 사용은 해석결과의 오차를 효과적으로 감소시켰다.
최근 부산신항은 항계 내의 장해물 제거 공사와 함께 부두 부근 항내 수심을 17m까지 확보하여 컨테이너 선박의 대형화 추세에 지속해서 대응하고 있다. 한편, 2020년도에는 24,000TEU급 초대형 컨테이너 선박이 입항하고 있으며, 이와 같은 흐름에 맞추어 추후 항내 수 심을 23m까지 확보하는 것을 계획 중이다. 이처럼 대형선박 입항 시 상황에 따라 주의하여야 할 요소에 대한 사전 점검이 필요하며, 이를 위 한 이해관계자 간의 정보 공유가 필요할 것으로 판단된다. 본 논문에서는 초대형 컨테이너 선박의 통항에 따른 해당 항로의 영향을 파악하기 위하여 선박 입·출항 통계자료 및 선박 운항 성능 자료를 바탕으로 통항 안전성 평가를 시행하였으며, 4,000 TEU선박 통항시와 비교하여 최 대 8.4%높은 위험도가 발생하였다. 또한, 초대형 컨테이너 선박의 부산신항 내 안전한 통항을 위한 도선 관점에서의 운항 특성 의견을 취합하 여 최소안전수심과 예선 운용 방안 등의 안전대책을 함께 제시하였다. 이를 통하여 초대형 컨테이너 선박의 부산신항 입·출항시 사고 예방에 이바지할 수 있을 것으로 사료된다.
대형 LNG 선박의 선체 운동은 선박의 안전에 영향을 미친다. 본 연구의 목적은 153,000 m3 급 대형 LNG 선박의 선체 운동 중에서 롤 운동에 대한 전달함수를 추정하기 위한 것이다. 단일-입력과 단일-출력 그리고 시스템 전달함수를 갖는 선형 시 불변(Linear Time-Invarient) 시스템을 이용하여 선체 운동 전달함수를 모델링 하였다. 모델의 입력으로 단일 해양파를 이용하고, 모델의 출력으로는 ANSYS를 통해서 획득한 LNG 선박의 롤 운동을 이용하여 시스템 식별법을 기반으로 선체 운동의 전달함수를 추정하였다. 실험 결과의 유용성은 전달함수 차원이 서로 다른 경우에 대한 모델의 안정도와 추정률을 이용하여 평가하였다. 실험 결과 안정도는 99%와 98%로 나타나고, 추정률은 78%와 50%로 나타났다. 이러한 결과로부터, 본 연구에서 제안한 선체 운동 전달함수 추정 방법이 타당함을 알았다. 향후, 실제 해상에서 운항 중인 선박의 선체 운동 데이터를 획득하여 다중-입력 그리고 다중-출력을 갖는 모델 구축에 적용하여 실용화를 추진할 예정이다.
제한수역에서 측벽부근을 대형선박이 항행할 경우, 측벽으로 인하여 발생하는 유체력이 대형선박의 조종운동에 상당히 크게 영향을 미친다는 것은 잘 알려져 있다. 이 논문에서는 방파제형상을 하고 있는 측벽 부근을 대형선박이 항행하는 경우, 선박과 방파제 형상간의 간섭력 추정을 위해 세장체 이론을 토대로 한 계산 방법을 적용하였으며, 선박에 미치는 측벽의 영향을 파악하기 위하여 방파제길이, 방파제와 선박간의 거리 및 수심을 변수로 하여 선박과 측벽과의 간섭력을 수치 계산하였다.
국내 컨테이너 터미널의 대부분 컨테이너 처리량에 비해 장치장 규모가 협소한 편이다. 장치장이 협소한 이유는 터미널 개발 시 적용된 이론적인 안벽 처리능력이 실제 처리능력과 차이가 나기 때문이다. 또한 최근 선박이 대형화 되면서 터미널들이 안벽장비를 추가 투입함으로써 안벽 생산성을 당초보다 크게 향상시킨 현실에 기인하기도 한다. 본 연구에서는 터미널 운영 현실을 반영하여 하역 능력을 재산정하고 10,000TEU에 이르는 초대형 선박을 대상으로 하여 소요 장치장 규모를 산정 한 후 기존 터미널의 장치장 규모와 경제성을 비교하는 것을 주목적으로 한다.
측벽과 선박간의 상호 간섭력이 선박 조종 운동에 상당히 크게 작용하는 것은 잘 알려셔 있다. 이 논문에서 측벽 부근을 항해하는 선박에 미치는 측벽의 간섭 영향에 대해서 다루어지고, 선박과 측벽간의 간섭력 추정을 위해 세장체 이론을 토대로 학 계산 방법이 적용되며, 선박 조종 운동에 미치는 측벽의 영향을 파악하기 위하여 선박과 돌제(반원)형상을 하고 있는 측벽간의 간섭력을 수치 계산하였다. 이 논문에서 사용되어진 계산 방법은 제한수역에서의 충돌 회피를 위한 선박의 자동 세어 시스템과 해상 교통 제어 시스템 및 항만 건설 등을 위한 초기 설계 단계에서 선박 조종성의 예측에 상당히 유용할 것이다
1990년대에 들어서 대형 선박에 대한 논의가 활발해진 가운데 최근 15,000 TEU에 달하는 메가 선박(Mega ship)과 이를 위한 메가 항만(Mega hub)에 대한 개념이 소개되었다. 초대형 선박에 관한 연구는 선박 설계, 항만 설계, 선박 운영, 물류 관리 등 다양한 관점에서 수행되어 왔으며, 그 결과 역시 다양하여 초대형 선박의 기술적 가능성과 경제적 타당성에 대한 이해를 돕지 못하고 있다. 따라서, 본 연구는 관련 문헌을 체계적으로 고찰함으로서 기존 연구의 현황과 한계 그리고 향후 연구 방향을 제시한다.
In the North Pacific Ocean a lot of large waves set up in winter, affected by continued winds and swells owing to severe extratropical cyclones. Under this sea condition, if the ship is about 100,000L/T (in deadweight capacity tonnage), we can't find the danger involved in the ship at sea apparently. But when we compare the seaworthiness of ship's building strength with the stress given to the hull by waves, we can't insist that the former be more stronger than the latter. As a result, VLCC is in danger of destroying and cutting for lack of longitudinal strength in heavy weather. Up to this time, Naval Architects have actively studied the relation between ship's longitudinal strength and waves as a ship's projector; however, actually, they have never made more profound study on the problem of longitudinal strength in relation to navigation. The main puprpose of this thesis is to clarify these vivid actual states of ship's trouble unknown to ship's masters. In this thesis we picked up VLCC Pan Yard, a vessel of Pan Ocean Bulk Carrier company's, as a model ship. And in the North Pacific Ocean, we have chosen for this research the basins where the wind speed and the wave height are greater than average. The data used this thesis are quotes from the "winds and waves of the North Pacific Ocean('64-'73)", and wind speed more than 30 knots was made use of as an ocject of this study. By usinh the ITTC wave spectrum, we found out the significant waves for every 5 knots within the range of 20 knots to 45 knots of wind speed. According to this H1/1000 was calculated. The stress of ship's hull is determined by ship's speed and wave height. We compared the ship's longitudinal strength with a planned wave height by rules of several famous classification societies in the world. In the last analysis, we found out that ship's present planned strength in heavy weather is not enough. Finally we made a graph for avoiding heavy weather, with which we studied safe ship's handling in the North pacafic Ocean in winter.