In this study, the ventilation of duct is simulated by CFD and thermal changes on the seat surface are measured experimentally. These models are the improved duct and the existing one installed at the real seat in order to test the thermal change 1 minute later. The seat with the existing duct has the temperatures of 26℃ and 25℃ on lumber and femoral parts respectively. However, the seat with the improved duct has the temperature of 1℃ lower than the seat with the existing duct. This result contributes to develop the improved duct. Hereafter, the methods used in this study are expected to be useful at checking the flow resistance loss of the ventilation seat duct and assessing the flow channel design
In the paper an efficient numerical algorithm to predict the flow phenomena around the water-jet propulsion system was described. The potential-based flow analysis method was adopted to predict the velocity and the pressure on the inlet duct of the water-jet propulsion system. The method employed normal dipoles and source distributed on the solid surface such as the inlet duct and the tracked vehicle. The inlet duct and outlet open boundary surfaces were introduced where the sources and dipoles were distributed to define a closed boundary surface. The developed numerical algorithm was applied to a tracked vehicle propelled by the water-jet propulsion system with the different IVR(inlet velocity ratio). The results by the numerical analysis were compared with the experimental data in order to verify the feasibility of the proposed numerical algorithm.
In this paper, numerical investigation of transition characteristics in a square-sectional curved duct flow. Computational fluid dynamic(CFD) simulation was performed using the commercial CFD code FLUENT to investigate the transition characteristics. The flow development is found to depend upon Dean number and curvature ratio. The velocity profiles in center of the duct have lower value than those of the inner and outer walls.
이 연구에서는 정사각 단면을 갖는 덕트 내부에 원심력의 영향을 받는 유동의 천이특성을 실험 및 수치적으로 규명하였다. 실험적 연구로서 레이저도플러 속도계를 이용하여 축방향속도를 측정하였고, 상용소프트웨어인 플루언트를 이용한 전산유체 시뮬레이션으로 천이특성을 고찰하였다. 유동의 발달은 딘수와 굽힘각에 의존한다는 사실을 알 수 있었으며 덕트의 중앙에서의 속도분포는 원심력 때문에 내외벽보다 낮은 값을 나타내었다.