Test of the operating characteristics and energy saving performance of a container cooling system that reduces the operating energy of a refrigeration system using a loop thermosyphon heat exchanger that removes heat by temperature difference between outdoor and indoor was performed. As a result of the experiments, when the loop thermosyphon and the refrigeration system were operated simultaneously, the refrigeration system operated intermittently by reducing the heat load. As the temperature difference between indoor and outdoor increased, the operating time of the refrigeration system decreased and the energy efficiency rate increased. Energy efficiency rate showed a tendency to increase with increasing temperature difference, and the predicted correlation of energy efficiency rate using the performance of the loop thermosyphon heat exchanger and the refrigeration system was relatively consistent with the experimental value.
Experiments were conducted to evaluate the performance factors such as type of working fluid, flow direction, arrangement and stage of loop thermosyphon heat exchanger for ESS battery container cooling. Pentane showed slightly better performance of the heat exchanger than R-134a as a working fluid. Driving the fan in the suction direction showed improved performance compared to the blowing direction. The two-stage heat exchanger increased the heat transfer rate by more than 30% at the same temperature difference compared to the single-stage heat exchanger. Also, the counterflow flow showed better performance than the parallel flow in the two-stage heat exchanger.
Experiments were conducted on the operating characteristics and performance of various types of working fluid, filling amount and heat flow rate of a loop thermosyphon for cooling ESS battery container. As results of performance test on various working fluids, HFE-7100 and R-134a as a working fluids showed unstable operating and low performance due to vapor pressure drop, and performance was improved by increasing the number of vapor lines for reducing a pressure drop. In this study, n-pentane was more stable and showed better thermal performance among various working fluids.
The loop thermosyphon has been designed and tested for cooling several hundreds watt of heat. This cooling system is consisted of copper block, condenser which is fabricated with tubes and fins and transport lines. In this research, operational characteristics and limitation of the loop thermosyphon were investigated as a function of fill charge ratio, thermal load, vapor temperature and effective head. The experimental results shows that the heat transfer limitation is dominated by vapor temperature and effective head. Also, the correlation for the heat transfer limitation is presented and showed good agreement. The evaporating heat transfer coefficient is affected by vapor temperature and heat flux, but the fill charge ratio and liquid head are minor factor.