본 연구에서는 Na2SO4 폐수 처리를 위한 바이폴라막 전기투석(bipolar membrane electrodialysis, BPED)에 적용하 기 위한 sulfonated poly(phenylence oxide) (SPPO) 기반 강화 양이온교환막(cation-exchange membrane, CEM)을 제조하고 그 성능을 평가하였다. 특히, 다양한 open area, opening size, 두께를 가지는 직조형 지지체를 사용하여, 지지체가 강화막의 물리 적 및 전기화학적 특성에 미치는 영향을 분석하였다. 실험 결과, open area와 opening size가 증가할수록 이오노머의 충진율 이 증가하고 이온 전도 경로가 개선되어 막의 전기적 저항이 감소하고 함수율은 증가하는 경향성을 나타내었다. 한편, OH- 이온은 함수율이 높은 조건에서 막을 통해 더 쉽게 투과하였으며, SO4 2‒ 이온은 지지체의 특성과는 상관없이 전반적으로 낮 은 투과도를 나타내었다. 또한 제조막의 특성과 산/알칼리 조건에서의 내화학성을 종합적으로 고려한 결과, polypropylene (PP)이 가장 적합한 보강재 소재로 판단되었으며, 이를 활용하여 제조한 강화막은 상용막 대비 우수한 인장강도와 구조적 안 정성을 나타내었다. 개발된 강화 CEM을 BPED에 적용한 결과, 상용막 대비 막을 통한 SO4 2‒ 누출이 현저히 억제되어 산/염 기 순도, 전류 효율, 및 에너지 효율이 향상됨을 확인할 수 있었다.
청정에너지는 원유 사용으로 인한 이산화탄소 배출로 환경오염이 계속 증가하는 이 시기에 필요한 에너지이다. 리튬 이온 배터리는 훌륭한 대안 중 하나이지만 막대한 수요로 인해 오염은 물론 비용이 증가한다. 배터리에서 사용한 리튬 을 재활용하는 것이 상기 문제를 해결하는 가장 좋은 방법이다. 정전 용량 탈이온화 공정(capacitive deionization, CDI)에서 는, 셀을 통과하는 전해질에 존재하는 양이온과 음이온이 전극 물질로 전환되고 전극의 극성이 반대가 됨으로써 탈착된다. 전 극의 특성을 개선하는 것이 리튬 이온 회수를 향상시키는 데 있어 핵심이다. 주요 문제는 리튬 이온의 낮은 탈삽입과 선택성 이다. 망간 산화물과 같은 전이 금속 산화물이 탄소 나노튜브로 코팅될 경우, 리튬 회수 성능이 향상된다. 본 리뷰 논문에서 는 폴리머 기반 전극과 복합 전극에 의한 리튬 회수에 대해 설명하며, 최근 전극 소재의 발전이 CDI 성능 향상에 어떻게 기 여하는지에 대해 초점을 맞춘다. 이러한 발전이 리튬 회수 효율 개선에 어떻게 기여하는지 설명하며, 기존 문헌을 보완하고 확장하는 관점을 제시한다.
티오에테르를 기반으로 한 고분자 막은 이온 교환 및 나노 여과에서 중요한 분리 과정의 한 종류를 나타낸다. 막 을 통한 이온의 선택적 투과는 연료 전지, 전기투석, 역전기투석 등 다양한 응용 분야에서 활용되고 있습니다. 티오에테르 변 형은 막의 안정성, 기능 및 상호 작용에 미치는 영향으로 주목받고 있다. 나피온과 같은 양이온 교환 막은 인기 있는 상업적 옵션이지만 비용은 여전히 상당한 제약으로 남아 있다. 반면, 설폰화 폴리(아릴렌 티오에테르 설폰)(SPTES)와 같은 공중합체 는 경제적으로 실용적이며 연료 전지의 핵심 요구 사항인 설폰화 정도를 쉽게 제어할 수 있다. 탈염은 염분은 거부되고 압력 은 구동력이기 때문에 막 분리 공정이 활용되는 또 다른 분야이다. 이 리뷰에서는 위에서 언급한 발전 사항에 대해 논의한다.
바이러스 여과는 동물세포기반 바이오 의약품 제조에서 중요한 정제 공정으로, 특수하게 설계 및 제조된 분리막 을 사용하여 바이러스를 차단하고 항체 등 바이오 의약 물질을 선택적으로 통과시킨다. 바이러스 필터의 핵심 성능인 바이러 스 제거율과 항체 및 단백질의 회수율은 필터의 기공 구조와 대칭성뿐만 아니라, 여과 조건(표면 다공성, 압력, 유속, pH, 이 온 강도 등)에 따라 달라진다. 특히 단백질 오염은 비가역적 및 가역적 오염으로 구분되며, 추가로 blocking 모델을 통해 정밀 하게 분석하였다. 본 총설에서는 바이러스 필터 및 여과 공정의 이해 및 최적화를 위해 필터 구조, 제거 기작과 막오염 현상 을 소개하고, 바이러스 여과 공정에서 제거성능에 영향을 미치는 다양한 인자를 분석해보고자 한다.