When evaluating the extent of the impact of water pollutants on the surrounding area, we would like to present the target level (proposal) of the quality of the environment, which is the standard for evaluation. We propose the environmental quality target level for substances that need to be applied domestically by investigating overseas cases operating the integrated environmental management system and the implications of domestic environmental pollutant management. The appropriateness of the environmental quality target level reviewed in this study was determined using data from the water quality measuring network, and future improvement measures were proposed. We review the available methodologies for setting quality objectives for the environment. It proposed the environmental quality target level for 21 substances that have domestic water pollutant emission standards and do not have environmental standards, and proposed future improvement measures. If it is necessary to add quality target-level items of the environment in the future, it is believed that expansion will be possible based on the methodology presented in this study.
In recent years, the United States has used the Load Duration Curve (LDC) method to identify water pollution problems, considering the size of the pollutant load in the entire stream flow condition to effectively evaluate Total Maximum Daily Loads (TMDLs). A study on the improvement of the target water quality evaluation method was carried out by comparing evaluations of two consecutive years of water quality and LDC data for 41 unit watersheds (14 main streams and 27 tributaries). As a result, the achievement rate of the target water quality evaluation method, according to current regulations, was 68-93%, and that by the LDC method was 82-93%. Evaluating the target water quality using the LDC method results in a reduction in the administrative burden and the total amount of planning as compared to the current method.
The Ministry of Environment (MOE) has made more effort in managing point source pollution rather than in nonpoint source pollution in order to improve water quality of the four major rivers. However, it would be difficult to meet water quality targets solely by managing the point source pollution. As a result of the comprehensive measures established in 2004 under the leadership of the Prime Minister’s Office, a variety of policies such as the designation of control areas to manage nonpoint source pollution are now in place.
Various action plans to manage nonpoint source pollution have been implemented in the Soyang-dam watershed as one of the control areas designed in 2007. However, there are no tools to comprehensively assess the effectiveness of the action plans. Therefore, this study would assess the action plans (especially, BMPs) designed to manage Soyang-dam watershed with the WinHSPF and the CE-QUAL-W2.
To this end, we simulated the rainfall-runoff and the water quality (SS) of the watershed and the reservoir after conducting model calibration and the model validation. As the results of the calibration for the WinHSPF, the determination coefficient (R2) for the flow (Q, m3/s) was 0.87 and the R2 for the SS was 0.78. As the results of the validation, the former was 0.78 and the latter was 0.67. The results seem to be acceptable. Similarly, the calibration results of the CE-QUAL-W2 showed that the RMSE for the water level was 1.08 and the RMSE for the SS was 1.11. The validation results(RMSE) of the water level was 1.86 and the SS was 1.86.
Based on the daily simulation results, the water quality target (turbidity 50 NTU) was not exceeded for 2009∼2011, as results of maximum turbidity in '09, '10, and '11 were 3.1, 2.5, 5.6 NTU, respectively. The maximum turbidity in the years with the maximum, the minimum, and the average of yearly precipitation (1982∼2011) were 15.5, 7.8, and 9.0, respectively, and therefore the water quality target was satisfied. It was discharged high turbidity at Inbuk, Gaa, Naerin, Gwidun, Woogak, Jeongja watershed resulting of the maximum turbidity by sub-basins in 3years(2009∼2011).
The results indicated that the water quality target for the nonpoint source pollution management should be changed and management area should be adjusted and reduced.
섬진강 댐 상류의 경우 큰 오염원의 유입이 없어 수질이 상대적으로 양호한 반면, 섬진강 댐 하류 지역의 경우 지자체들을 포함하고 있어 섬진강 본류의 수질악화 문제가 발생할 수 있다. 이에 댐 하류 지역의 수질을 예측하고 단위유역별 목표수질을 달성하기 위한 적정 방류량 산정은 댐 운영에 있어 중요한 관리방안이라 할 수 있다. 본 연구에서는 섬진강수계 중권역 물환경관리계획에서 제시된 오염부하량 자료를 기반으로 섬진강댐 하류 지역의 수질을 예측하고 공시된 목표수질을 달성하기 위한 섬진강댐의 적정 방류량을 산정하고자 한다. 적정 댐 방류량을 결정하기 위한 수리 특성 분석을 실시하고, 수질모델링을 통한 하천 수질 기준의 만족 여부를 검토하였다. 이를 통해 기존 수질 분석 및 예측을 실시하고 목표수질을 만족하지 못하는 경우에 섬진강 댐 하류 지역의 목표수질을 만족하기 위한 댐의 적정 방류량을 산정하였다. 수질모의를 실시한 결과 섬진강 본류에 대한 목표수질을 만족하기 위해서는 최종 배출부하량에 대하여 8.4∼213.6 cms의 최종 댐 방류량이 필요한 것으로 분석되었다.