Recently, the amount of heat generated in devices has been increasing due to the miniaturization and high performance of electronic devices. Cu-graphite composites are emerging as a heat sink material, but its capability is limited due to the weak interface bonding between the two materials. To overcome these problems, Cu nanoparticles were deposited on a graphite flake surface by electroless plating to increase the interfacial bonds between Cu and graphite, and then composite materials were consolidated by spark plasma sintering. The Cu content was varied from 20 wt.% to 60 wt.% to investigate the effect of the graphite fraction and microstructure on thermal conductivity of the Cu-graphite composites. The highest thermal conductivity of 692 W m−1K−1 was achieved for the composite with 40 wt.% Cu. The measured coefficients of thermal expansion of the composites ranged from 5.36 × 10−6 to 3.06 × 10−6 K−1. We anticipate that the Cu-graphite composites have remarkable potential for heat dissipation applications in energy storage and electronics owing to their high thermal conductivity and low thermal expansion coefficient.
Cu circuits were successfully fabricated on flexible PET(polyethylene terephthalate) substrates using wettability difference and electroless plating without an etching process. The wettability of Cu plating solution on PET was controlled by oxygen plasma treatment and SiOx-DLC(silicon oxide containing diamond like carbon) coating by HMDSO(hexamethyldisiloxane) plasma. With an increase of the height of the nanostructures on the PET surface with the oxygen plasma treatment time, the wettability difference between the hydrophilicity and hydrophobicity increased, which allowed the etchless formation of a Cu pattern with high peel strength by selective Cu plating. When the height of the nanostructure was more than 1400 nm (60 min oxygen plasma treatment), the reduction of the critical impalement pressure with the decreasing density of the nanostructure caused the precipitation of copper in the hydrophobic region.
We investigated the characteristics of electroless plated Cu films on screen printed Ag/Anodized Al substrate. Cu plating was attempted using neutral electroless plating processes to minimize damage of the anodized Al substrate; this method used sodium hypophosphite instead of formaldehyde as a reducing agent. The basic electroless solution consisted of CuSO4·5H2O as the main metal source, NaH2PO2·H2O as the reducing agent, C6H5Na3O7·2H2O and NH4Cl as the complex agents, and NiSO4·6H2O as the catalyser for the oxidation of the reducing agent, dissolved in deionized water. The pH of the Cu plating solutions was adjusted using NH4OH. According to the variation of pH in the range of 6.5~8, the electroless plated Cu films were coated on screen printed Ag pattern/anodized Al/Al at 70˚C. We investigated the surface morphology change of the Cu films using FE-SEM (Field Emission Scanning Electron Microscopy). The chemical composition of the Cu film was determined using XPS (X-ray Photoelectron Spectroscopy). The crystal structures of the Cu films were investigated using XRD (X-ray Diffraction). Using electroless plating at pH 7, the structures of the plated Cu-rich films were typical fcc-Cu; however, a slight Ni component was co-deposited. Finally, we found that the formation of Cu film plated selectively on PCB without any lithography is possible using a neutral electroless plating process.
This paper deals with the effects of the surfactant and preplate process (sensitization and activation) on electroless copper plating on carbon nano-fiber (CNF). Ultrasonic irradiation was applied both during dispersion of CNF and during electroless plating containing preplate process. The dispersion of CNF and flatness of the plated copper film were discussed based on the changes in surfactant concentration and preplate process time. It was clearly shown that high concentration of surfactant and long time of preplate process could promote the agglomeration of CNF and uneven copper plating on CNF.
Silver coated copper composite powders were prepared by electroless plating method by controlling the activation and deposition process variables such as feeding rate of silver ions solution, concentration of reductant and molar ratio of activation solution at room temperature. The characteristics of the product were verified by using a scanning electron microscopy (SEM), X-ray diffraction (XRD) and atomic absorption (A.A.). It is noted that completely cleansing the copper oxide layers and protecting the copper particles surface from hydrolysis were important to obtain high quality Ag-Cu composite powders. The optimum conditions of Ag-Cu composite powder synthesis were molar ratio 4, concentration of reductant 15g/l and feeding rate of silver ions solution 2 ml/min.