본 연구에서는 3차원 바람장 생성을 위한 수치 모델의 상층기상 입력 자료로 윈드프로파일러 자료의 적용 가능성과 유용성을 조사했다. 10개 지점의 윈드프로파일러 자료와 기상 예측 모델 WRF의 결과를 기상진단 모델 CALMET에 입력하여 산출한 바람장을 8개 지역에서 관측된 라디오존데 자료와 통계적으로 비교 검증하였다. WRF 바람장 모의 결과를 CALMET에 적용하여 모의한 수평 풍속에 비해 1시간 간격의 윈드프로파일러 자료를 CALMET에 적용하여 모의한 수평 풍속이 평균 제곱근 오차 1.5 m/s 내에서 관측 결과와 일치하고 특히 연안 지역에서 해풍과 같은 국지적인 바람 변화를 잘 모의하였다. 풍향의 평균 제곱근 오차는 50° ~ 70°로써 지형의 영향으로 오염된 윈드프로파일러의 풍향 오차에 기인한다. 윈드프로파일러 자료를 CALMET에 적용하면 대부분의 고도에서 상대적으로 정확한 바람을 신속하고 정확하게 모의할 수 있기 때문에 본 연구에서 제시하는 방법은 연안 지역의 기상뿐만 아니라 안전 환경감시에 유용할 것으로 기대된다.
연안 해상 바람 자원 평가에 적용되는 해상풍 위성자료 동화특성을 평가하기 위하여 수치실험을 실시하였다. 사용된 위성자료는 미항공우주국의 QuikSCAT과 유럽우주국의 ASCAT이다. 해상풍 위성자료 동화과정은 연안지역 바람 자원 평가의 정확성을 향상시키는 주요한 요소의 하나이다. QuikSCAT의 관측 가능한 빔폭이 상대적으로 넓기 때문에 QuikSCAT 해상풍 자료를 동화하여 제시된 연안 바람장이 ASCAT를 사용한 바람장보다 약간 높은 정확도를 제시한다. 그러나 센서의 직하 부근의 바람장은 상대적으로 ASCAT의 예측 정확도가 높게 나타난다. 이러한 해상풍 위성자료의 동화효과는 6시간 정도 지속되기 때문에 정확한 연안지역 바람장을 평가하기 위해서는 센서의 공간해상도뿐 아니라 시간해상도가 높은 해상풍 위성자료 동화 과정이 필요하다.
복잡한 산악지형과 숲이 있는 나로 우주센터의 미규모 바람장을 MUKLIMO를 사용하여 모의하였다. 지형과 나무가 있을 때 모델의 민감도를 실험하기 위하여 각종 초기조건하에 수치모의를 수행하였다. 실험결과 나무는 평지 위에 서는 큰 영향을 미치나 언덕지형에서는 큰 영향을 미치지 못함을 알았다. 이러한 실험결과를 이용하여 나로 우주센터의 10m 상공에서의 미규모 바람장과 또, 발사장의 건설전후의 바람장도 모의하였다. 본 연구결과 MUKLIMO는 복접한 지형에서도 바람장의 수치모의가 가능하며 매우 유용함을 알았고 우주센터에서의 바람의 특성이 규명되었다.
Baengnyeongdo, located within the Asian dust stream, is an ideal place to analyze Asian dust moving into the West Sea due to its low emission of artificial pollutants. Baengnyeongdo is being used to analyze the vertical distribution of dust from the lower atmosphere to the upper layer through remote observation. This study compared the ground concentration of dust between Baengnyeongdo and the metropolitan area, estimated the lag time of transport of Asian dust from Baengnyeongdo to the metropolitan area, and examined the homogeneity of upper winds using the rawinsonde method. The results showed that the cross correlation coefficient was higher and the lag time was shorter for each observation station when the distance from Baengnyeongdo was shorter. The upper wind at Baengnyeongdo is dominated by the west/northwest wind. It is the basis for the correlation of dust concentration between Baengnyeongdo and the metropolitan area located to the east. In the future, upper wind data and Asian dust concentration data over the West Sea and Baengnyeongdo are expected to contribute to research related to the movement and prediction of Asian dust and preparation for Asian dust in the metropolitan area.
Wind information is one of the major inputs for the prediction of urban air flow using computational fluid dynamic (CFD) models. Therefore, the numerical characteristics of the wind data formed at their mother domains should be clarified to predict the urban air flow more precisely. In this study, the formation characteristics of the wind data in the Seoul region were used as the inlet wind information for a CFD based simulation and were analyzed using numerical weather prediction models for weather research and forecasting (WRF). Because air flow over the central part of the Korean peninsula is often controlled not only by synoptic scale westerly winds but also by the westerly sea breeze induced from the Yellow Sea, the westerly wind often dominates the entire Seoul region. Although simulations of wind speed and air temperature gave results that were slightly high and low, respectively, their temporal variation patterns agreed well with the observations. In the analysis of the vertical cross section, the variation of wind speed along the western boundary of Seoul is simpler in a large domain with the highest horizontal resolution as compared to a small domain with the same resolution. A strong convergence of the sea breeze due to precise topography leads to the simplification of the wind pattern. The same tendency was shown in the average vertical profiles of the wind speed. The difference in the simulated wind pattern of two different domains is greater during the night than in the daytime because of atmospheric stability and topographically induced mesoscale forcing.
The typical characteristics of seasonal winds were studied around the Pohang using two-stage (average linkage then k-means) clustering technique based on u- and v-component wind at 850 hpa from 2004 to 2006 (obtained the Pohang station) and a high-resolution (0.5 km grid for the finest domain) WRF-UCM model along with an up-to-date detailed land use data during the most predominant pattern in each season. The clustering analysis identified statistically distinct wind patterns (7, 4, 5, and 3 clusters) representing each spring, summer, fall, and winter. During the spring, the prevailed pattern (80 days) showed weak upper northwesterly flow and late sea-breeze. Especially at night, land-breeze developed along the shoreline was converged around Yeongil Bay. The representative pattern (92 days) in summer was weak upper southerly flow and intensified sea-breeze combined with sea surface wind. In addition, convergence zone between the large scale background flow and well-developed land-breeze was transported around inland (industrial and residential areas). The predominant wind distribution (94 days) in fall was similar to that of spring showing weak upper-level flow and distinct sea-land breeze circulation. On the other hand, the wind pattern (117 days) of high frequency in winter showed upper northwesterly and surface westerly flows, which was no change in daily wind direction.
A system coupled the prognostic WRF mesoscale model and CALMET diagnostic model has been employed for predicting high-resolution wind field over complex coastal area. WRF has three nested grids down to 1km during two days from 24 August 2007 to 26 August 2007. CALMET simulation is performed using both initial meteorological field from WRF coarsest results and surface boundary condition that is Shuttle Radar Topography Mission (SRTM) 90m topography and Environmental Geographic Information System (EGIS) 30m landuse during same periods above. Four Automatic Weather System (AWS) and a Sonic Detection And Ranging (SODAR) are used to verify modeled wind fields. Horizontal wind fields in CM_100m is not only more complex but better simulated than WRF_1km results at Backwoon and Geumho in which there are shown stagnation, blocking effects and orographically driven winds. Being increased in horizontal grid spacing, CM_100m is well matched with vertically wind profile compared SODAR. This also mentions the importance of high-resolution surface boundary conditions when horizontal grid spacing is increased to produce detailed wind fields over complex terrain features.
The urban microscale wind field around the air quality monitoring station was investigated in order to check how a building complex influences it. For this study as the high density areas Jwa-dong and Yeonsan-dong monitoring sites in Busan were chosen. As the direction of inflow which is perpendicular to the building of the monitoring station was expected to cause the considerable variation of the wind field, that direction was selected. The model Envi-met was used as the diagnostic numerical model for this study. It is suitable for this investigation because Envi-met has the microscale resolution. After simulating it, on the leeward side around a building complex the decrease of flow velocity and some of vortexes or circulation area were discovered. In addition, on the edge of the top at the building and at the back of the building the upward flow was developed. If the sampling hole of monitoring site were located in this upward flow, it would be under the influence of upward flow from the near street.
To understand the development mechanism of the aerosols in the surface boundary layer, the variation in the aerosol number concentration due to the divergence and convergence of the wind fields was investigated. The aerosol number concentration was measured in the size ranges of 0.3∼10.0 ㎛ using a laser particle counter(LPC) from 0000 LST on 03 Feb. to 0600 LST on 07 Feb. 2004 at Mokpo in Korea during snowfall. The Velocity Azimuth Display(VAD) technique was used to retrieve the radar wind fields such as the horizontal wind field, divergence, and deformations including the vertical air velocity from a single Doppler radar. As a result, the distribution of the aerosol number concentration is apparently different for particles larger than 1 ㎛ during snowfall, and it has a tendency to increase at the beginning of the snowfall. The increase and decrease in the aerosol concentration due to the convergence and divergence of the wind fields corresponded to the particles with diameters greater than 1 ㎛. It is found that the fluctuations in the aerosol number concentration are well correlated with the development and dissipation of snowfall radar echoes due to the convergence and divergence of horizontal wind fields near the surface boundary layer in the inland during the snowfall.
We focused on effects on data assimilation of simulated wind fields by using upper-air observations (wind profiler and sonde data). Local Analysis Prediction System (LAPS), a type of data assimilation system, was used for wind field modeling. Five cases of simulation experiments for sensitivity analysis were performed : which are EXP0) non data assimilation, EXP1) surface data, EXP2) surface data and sonde data, EXP3) surface data and wind profiler data, EXP4) surface data, sonde data and wind profiler data. These were compared with observation data.
The result showed that the effects of data assimilation with wind profiler data were found to be greater than sonde data. The delicate wind fields in complex coastal area were simulated well in EXP3. EXP3 and EXP4 using wind profiler data with vertically high resolution represented well sophisticated differences of wind speed compared with EXP1 and EXP2, this is because the effects of wind profiler data assimilation were sensitively adjusted to first guess field than those of sonde observations.
A numerical study with Envi-met model is experimented to investigate the characteristics of wind pattern in apartment complex. In all case, most conditions such as wind speed, temperature, and surface features are considered as the same, but wind direction is the only different factor. The wind directions considered in this study have a meaning of prevailing wind direction. When the prevailing wind with the direction of 170° blows into the complex, the ventilation passage toward the outside of complex is formed and the stagnation of air is not expressed. In case of having the direction of 300°, most evident ventilation passages are composed. When the inflow wind direction is the northeast, 30°, there is some possibility of stagnation phenomenon. This is because the arrangement of buildings makes a right angle with the inflow wind direction.
We employed two data assimilation techniques including MM5 Four Dimensional Data Asssimilation (FDDA) and Local Analysis and Prediction System (LAPS) to find out the effects of the changed initial conditions on the wind fields simulation according to the objective analysis methods. We designed 5 different modeling cases. EXP B used no data assimilation system. Both EXP F1 using surface observations and EXP F2 with surface and upper-air observations employed MM5 FDDA. EXP L1 using surface observations and EXP L2 with surface and upper-air observations used LAPS.
As results of, simulated wind fields using MM5 FDDA showed locally characterized wind features due to objective analysis techniques in FDDA which is forcefully interpolating simulated results into observations. EXP F1 represented a large difference in comparison of wind speed with EXP B. In case of LAPS, simulated horizontal distribution of wind fields showed a good agreement with the patterns of initial condition and EXP L1 showed comparably lesser effects of data assimilation of surface observations than EXP F1. When upper-air observations are applied to the simulations, while MM5 FDDA could hardly have important effects on the wind fields simulation and showed little differences with simulations with merely surface observations (EXP F1), LAPS played a key role in simulating wind fields accurately and it could contribute to alleviate the overestimated winds in EXP L1 simulations.
We focused on improvement in simulation of wind fields for the complex coastal area. Local Analysis and Prediction System(LAPS) was used as a data assimilation method to improve initial conditions. Case studies of different LAPS inputs were performed to compare improvement of wind fields. Five cases have been employed : Ⅰ) non data assimilation, Ⅱ) all available data, Ⅲ) AWS, buoy, QuikSCAT, Ⅳ) AWS, buoy, wind profiler, Ⅴ) AWS, buoy, AMEDAS.
Data assimilation can supplement insufficiency of the mesoscale model which does not represent detailed terrain effect and small scale atmospheric flow fields. Result assimilated all available data showed a good agreement to the observations rather than other cases and estimated well the local meteorological characteristics including sea breeze and up-slope winds. Result using wind profiler data was the next best thing. This implies that data assimilation with many high-resolution sounding data could contribute to the improvements of good initial condition in the complex coastal area.
As a result, these indicated that effective data assimilation process and application of the selective LAPS inputs played an important role in simulating wind fields accurately in a complex area.
Elements of atmospheric environment, temperature, humidity and wind, at the compus of KNU(Kyungpook National University) were investigated by the observations. The observed data were compared with those of DWS (Daegu Weather Station). The simulations of wind field and dispersions of polluted gases were conducted by MUKLIMO under the various conditions. The results show that the atmospheric environment of KNU are suitable but the campus does not play role as a heat sink in the city. The simulations of wind field show the air flows and wind channels in the campus clearly. The exhausted gases by motor vehicles on the northside street of campus affect very much to the campus with NW(300˚) wind. The running cars in the campus are also pollute much on the campus with the various wind directions. The characteristics of environmental conditions, various meteorological fields, wind channels, and dispersion of exhausted gases at the campus of KNU were understood quantitatively in the study.
Diurnal variations of air quality for each season over Taegu city were analyzed using the characteristic features of the various synoptic wind fields. The air quality data which were monitored by four stations are the hourly averaged sulfur dioxid(SO_2), total suspended particulate (TSP) and oxidants (O_3) during the period of 1989 to 1992.
The various synoptic wind fields obtained from the 850 hPa geopotential height were divided into four geostrophic wind directions and two geostrophic wind speeds for each seasons. The synoptic weather conditions were again subdivided into two categories using the total cloud amounts.
The results shows that diurnal and seasonal variations of the air quality over Taegu city, such as sulfur dioxide, total suspended particulate and oxidants reveal the various characteristics under the same synoptic weather conditions.
To predict reasonably the movement and the concentration of the pollutants in the coastal area. A simulation model should be prepared considering detail topography with land-sea and the urban effects, and the resolution near the source. The explicit method can not be applied due to the unstability of the numerical calculation in high horizontal-grid resolution, while the ADI scheme satisfied with the high horizontal grid resolution and can be used in the fine mesh system which shows the detail topography, atmospheric flow The ADI method which studied the high horizontal grid resolution was excellent. The two dimentional model used in the study using ADI method is proved as a reasonable model to predict the wind field in any small scale area including mountainous coastal urban area.