In a previous study, we fractionated crude polysaccharide (AME-CP) with macrophage-stimulating activity from a hot-water extract (AME) of Astragalus membranaceus. AME-CP contained glucose (Glc) as a main component sugar, suggesting that it might be rich in starch-like compounds (SLC). To enhance the immunostimulating activity of AME-CP by pruning SLC rarely known to contribute to activity, hydrolysate (AME-SH) was prepared by digesting with starch-related enzymes, including α-amylase and amyloglucosidase. AME-SH was found to contain substances with molecular weights ranging from 3.9 to 84.4 kDa. These substances were primarily composed of galactose, galacturonic acid, Glc, arabinose, rhamnose, and mannose. AME-SH significantly enhanced the production of macrophage-stimulating factors, including nitric oxide (NO), interleukin (IL)-6, and IL-12, in RAW 264.7 cells compared to AME-CP. Treatment of splenocytes isolated from C3H/HeN mice with AME-SH not only promoted IL-6 secretion, but also induced mitogenic activity. In addition, AME-SH promoted the secretion of hematopoietic growth factors including IL-6 and granulocyte-macrophage colony-stimulating factor (GM-CSF) in Peyer's patch (PP) cells and stimulated bone marrow cell proliferation through these PP cells. In conclusion, hydrolysate (AME-SH) digested from AME-CP with starch-related enzymes could be used as a potential immunostimulant.
Recently, active research in Korea and worldwide has begun to focus on gene function and cultivar development using gene editing tools. This research, in addition to studies on edible mushroom, aims to enhance the physical and biochemical characteristics of mushrooms for applications in materials and substance production. For these studies, efficient isolation of protoplasts from the target mushroom is critical. However, several commercial cell wall-lysing enzyme cocktails, including Novozyme234, Glucanex, and Lysing enzymes, have recently been discontinued. In this study, we aimed to identify alternative enzyme systems to replace the discontinued cell wall-lysing enzymes for stable isolation of protoplasts from Ganoderma lucidum. To select an optimal osmotic buffer, enzyme function in 0.6 and 1.2 M Sorbitol, Sucrose, Mannitol, and KCl was assessed. The effect of reaction time was also evaluated. Protoplast isolation efficiency of each alternative enzyme was tested using lysing enzymes from Trichoderma harzianum, Chimax-N, and Yatalase, either individually or in combination. This matrix of studies identified enzymes and optimal conditions that could replace the discontinued lysing enzymes.
In response to the global interest and efforts towards reducing plastic use and promoting resource recycling, there is a growing need to establish methods for recycling discarded fishing gear. In Korea, various technologies are being developed to recycle discarded fishing gear, but significant technical and policy challenges still remain. In particular, biodegradable gill nets require a pre-treatment process to separate biodegradable materials from other substances and to remove salt before recycling. Therefore, this study aims to develop a pre-treatment device for recycling biodegradable gill nets and to evaluate the feasibility of recycling them.
This study investigated the impact of hydrolyzed plant proteins on the physical, thermal, and rheological properties of rice flour (RF) for protein fortification for the elderly and general food systems. Faba bean protein concentrate and chickpea flour were first treated with polysaccharide hydrolyzed enzymes (control; CTFP and CTCF, respectively) and subsequentially with protease hydrolyzed enzymes (hydrolyzed protein material; HZFP and HZCF, respectively). The addition of CTFP and HZFP enhanced the swelling power of RF, whereas the CTCF and HZCF exhibited the opposite trends. Adding all controls and hydrolyzed protein materials to RF increased the solubility and gelatinization temperature and decreased the gelatinization enthalpy. The HZFP addition successfully developed the pasting viscosity of RF, whereas the others did not. The RF-HZFP mixture had a higher peak viscosity than RF but lower trough, breakdown, final, and setback viscosities. These findings suggest that the controls and hydrolyzed protein materials studied here could be used as sources for protein fortification of foods, particularly for the elderly, with minimal changes in textural and rheological characteristics, thereby contributing to the development of nutritious and palatable food products.
In this study, we undertook detailed experiments to increase hydrogen production efficiency by optimizing the thickness of titanium dioxide (TiO2) thin films. TiO2 films were deposited on p-type silicon (Si) wafers using atomic layer deposition (ALD) technology. The main goal was to identify the optimal thickness of TiO2 film that would maximize hydrogen production efficiency while maintaining stable operating conditions. The photoelectrochemical (PEC) properties of the TiO2 films of different thicknesses were evaluated using open circuit potential (OCP) and linear sweep voltammetry (LSV) analysis. These techniques play a pivotal role in evaluating the electrochemical behavior and photoactivity of semiconductor materials in PEC systems. Our results showed photovoltage tended to improve with increasing thickness of TiO2 deposition. However, this improvement was observed to plateau and eventually decline when the thickness exceeded 1.5 nm, showing a correlation between charge transfer efficiency and tunneling. On the other hand, LSV analysis showed bare Si had the greatest efficiency, and that the deposition of TiO2 caused a positive change in the formation of photovoltage, but was not optimal. We show that oxide tunneling-capable TiO2 film thicknesses of 1~2 nm have the potential to improve the efficiency of PEC hydrogen production systems. This study not only reveals the complex relationship between film thickness and PEC performance, but also enabled greater efficiency and set a benchmark for future research aimed at developing sustainable hydrogen production technologies.
유통 중인 생분해성 합성수지로 만들어진 식품용 기구 및 위생용품 50건을 대상으로 ‘식품용 기구 및 용기·포장 공전’의 기준·규격을 검사하였다. PLA 재질의 유아식기 1 건에서 ‘과망간산칼륨소비량’이 20mg/L으로 기준치(10 mg/ L 이하)를 초과하였고, 그 외 모든 시료에서는 포름알데히 드, 납, 비소 등이 기준·규격 이하로 안전한 수준이었다. 또한 가정에서 유아식기를 소독하는 방법의 안전성을 조 사하기 위해, PLA 재질의 유아식기(n=21)에서 반복적인 열탕소독과 자외선 조사에 따른 이행량의 변화를 조사하였다. 반복적인 열탕소독이 자외선 조사에 비해 포름알데 히드와 비소의 이행량이 많았으나, 이행량은 매우 낮은 수 준이었다. 그리고 유아(만 1-3세) 기준으로 계산한 포름알 데히드와 비소의 일일추정섭취량(EDI)은 최대 6.0×10-4mg/ kg b.w./day 및 1.3×10-1 μg/kg b.w./day였으며, 이는 일일섭 취한계량(TDI, 0.15 mg/kg b.w./day) 및 잠정주간섭취허용 량(PTWI, 9.0 μg/kg b.w./week)의 0.40% 및 10.42%로 낮 은 수준임을 확인하였다. 따라서 현 국내에서 유통되고 있 는 식품용 생분해성 합성수지제는 안전한 수준임을 확인 하였다.
Plastics are widely used in industries in human society and because of their structural stability, degradation is a serious global issue. To estimate the degradation of plastic, 31 edible mushrooms were cultured with the selected plastic films (polyethylene [PE], polystyrene [PS], and poly(ethylene terephthalate) [PET]) for 3 months at 25 °C. Measuring the weight of the films showed that four species of mushrooms, namely Porostereum spadiceum, Ganoderma lucidum, Coprinellus micaceus, and Pleurotus ostreatus, exhibited the highest degrees of plastic degradation. In addition, the mushrooms and fungi that exhibited the most significant plastic degradation were cross-cultured to promote this degradation. As a result, cross-cultivation of G. lucidum and Aspergillus niger showed a weight loss of 2.49% for the PET film. For the PS film, Aspergillus nidulans showed a weight loss of 4.06%. Cross-cultivation of A. nidulans and C. micaceus, which showed a weight loss of 2.95%, was noted as an alternative for PS biodegradation, but is harmful to humans. These bio-degradation effects of edible mushroom will contribute to the development of alternatives for eco-friendly plastic degradation.
분리막 기술은 해수담수화, 기체분리 등 산업용 분리 정제 공정을 비롯하여 우리 주변의 생활용품, 의료 및 헬스 케어 제품 등에서 쉽게 찾아볼 수 있다. 최근 지속가능한 친환경 분리막 제조 기술 또한 환경오염을 줄이기 위해 연구되고 있으며, 특히 polylactic acid (PLA), polybutylene adipate terephthalate (PBAT), polybutylene succinate (PBS) 등 생분해성 소 재를 활용한 분리막 제조기술이 보고되어 왔다. 기존 분리막 소재와 마찬가지로 생분해성 고분자 소재들 또한 상분리 공정을 통해 다공성 분리막을 제조하는 연구가 이루어지고 있다. 본 총설을 통해 대표적인 생분해성 고분자인 PLA 기반의 상분리 공정을 활용한 분리막 제조 기술 개발 동향을 살펴보고 향후 연구 개발 및 적용 가능성에 대해 고찰해보고자 한다.
바이폴라막은 양이온교환층과 음이온교환층 및 양극접합층으로 이루어진 이온교환막으로 물 분해 특성을 기반으 로 하여 프로톤과 수산화 이온을 생성시키는 막이다. 이러한 특성을 이용하여 화학 산업, 식품 가공, 환경 보호, 에너지 변환 및 저장과 같은 다양한 응용 분야에서 연구가 되고 있다. 본 논문에서는 바이폴라막 기술에 대한 종합적인 이해를 제공하기 위해 바이폴라막의 개념 및 물 분해 메커니즘과 물 분해 촉매에 대한 조사하였다. 마지막으로 최근 에너지 기술에 적용되고 있는 바이폴라막 프로세스를 조사하였다.
일반적으로 적합직교분해(proper orthogonal decomposition, POD) 기반의 침습적(intrusive) 차수축소모델(reduced order model, ROM)을 활용하면 구조 시스템의 전체 자유도를 크게 줄이고 외연적 시간 적분법에서 해의 안정성을 만족하는 임계 시간 간격을 증가 시킬 수 있다. 따라서 본 연구에서는 POD-ROM을 활용하여 Voronoi-cell 격자 요소로 이산화된 구조 시스템의 축소와 이에 따른 외연 적 시간 적분법의 임계 시간 간격 및 해석 정확도 변화를 살펴보았다. 또한 지진하중과 같은 불규칙한 하중 이력을 받는 구조물 응답 해석에 POD-ROM을 적용하였다. 해석 결과 ROM을 통해 해의 정확도를 충분히 확보하면서 연산 시간을 크게 단축할 수 있음을 확인 하였다. 또한 POD-ROM과 VCLM의 연계 방안의 적절성을 확인하였다. 향후 해당 연구는 고정밀 대용량 동적 구조해석의 실용성을 높이고, 설계 변수에 따른 구조물 동적 거동의 실시간 예측을 위한 기반 연구로 활용될 수 있다.
본 논문은 회분식 반응기에서 습식 산화법으로 합성한 칼륨 페레이트(VI)에 의한 난분해성 아조 염료Reactive Black 5의 분해 과정을 연구하는 것을 목적으로 한다. 수용액에서 RB5의 분해는 pH, Ferrate (VI) 투입량, 초기 농도, 수용액 온도 등 다양한 변수의 조건에서 연구되었다. RB5 경우에는 최대 분해 효율은 pH 7.0에서 63.2%가 달성되었으며, 이 실험 조건에서 얻은 kapp 값은 190.49 M-1s-1 으로 나타났다. 온도 또한 가장 중요한 매개 변수 중 하나로 연구되었으며, 그 결과로부터 온도(45°C까지)를 증가시키면 페레이트(VI)에 의한 아조 화합물 염료의 분해 효율이 증가하고, 온도가 45°C를 초과하면 분해 효율이 저하되는 것으로 나타났다.
Fluorine-doped tin oxide (FTO) has been used as a representative transparent conductive oxide (TCO) in various optoelectronic applications, including light emitting diodes, solar cells, photo-detectors, and electrochromic devices. The FTO plays an important role in providing electron transfer between active layers and external circuits while maintaining high transmittance in the devices. Herein, we report the effects of substrate rotation speed on the electrical and optical properties of FTO films during ultrasonic spray pyrolysis deposition (USPD). The substrate rotation speeds were adjusted to 2, 6, 10, and 14 rpm. As the substrate rotation speed increased from 2 to 14 rpm, the FTO films exhibited different film morphologies, including crystallite size, surface roughness, crystal texture, and film thickness. This FTO film engineering can be attributed to the variable nucleation and growth behaviors of FTO crystallites according to substrate rotation speeds during USPD. Among the FTO films with different substrate rotation speeds, the FTO film fabricated at 6 rpm showed the best optimized TCO characteristics when considering both electrical (sheet resistance of 13.73 Ω/□) and optical (average transmittance of 86.76 % at 400~700 nm) properties with a figure of merit (0.018 Ω-1).