In this study, seismic fragility analysis are carried out for the water supply facilities. To consider the uncertainty of ground characteristics, the variability of soil in several cases is considered based on RSM and the winkler Foundation method is adopted to model the ground. Limit state of water supply facilities defined as two steps.: the collapse prevention level and the serviceability level. As an input ground motion for evaluating seismic fragilities, foreign surveyed real earthquakes and artificial earthquakes which can be generated in the Korean peninsula are used. The destruction ability according to peak ground acceleration of an earthquake for the water supply facility is evaluated in this paper. From the analysis results, the probability of failure of the ductile iron pipe and wrapped steel pipe under real earthquakes have shown as upper than the Korean artificial earthquakes. It could evaluate the damage of water supply facilities to an earthquake and could be applied as basic data for seismic design of water supply facilities.
To improve stability of the water resources that were seriously affected by climate change and various environmental effects and to supply the clean water always, continuous efforts are essential. Provision of measures with respect of hardware is basically essential to improve the water resources stability due to the topographic characteristic in Korea. However, building a new dam becomes gradually very difficult because of a hardship in selecting right places, opposition forces such as environment and local residents, negative publicity for large civil engineering projects, and so on. The present study, therefore, proposes the Blue dam as an alternative for securing the water resources of a new concept considering domestic conditions. To evaluate the effect of the Blue dam, the Hec-ResSim model is used and the probabilistic discharge flow rate is applied. As a result, when Dam Yeongcheon is applied as a study area, securing water resources of 14 million tons are predicted be secured and the flood control of 15.4 million tons is expected, in comparison with operation of the existing dam only. Consequently, Blue dams are supposed to carry out the function of securing water resources, controling flood, maintaining eco-environmental instream flow, generating hydroelectric power, and providing spaces for recreational activities.
3D-based BIM(Building Information Modeling) technologies can be utilized effectively as a means of systematic management of facility information for safety assurance and effective maintenance of waterworks facilities. In this study, BIM models of water treatment facilities that can be used as basic data for BIM-based maintenance of waterworks facilities were developed. Information exchange and generality of the developed BIM models were evaluated by conducting interoperability analysis of IFC(Industry Foundation Classes) conversion models. In addition, the application of COBie(Construction Operations Building information exchange) was recommended as an effective countermeasure to deal with technical limitation regarding exchange and utilization of facilities-related information through current IFC models. The results of this study can contribute to the development of BIM-based maintenance system for waterworks facilities.
Performance-based maintenance system is necessary to prepare for social disasters as domestic water supply facilities age. The maintenance methods of domestic Social Overhead Capital(SOC) facilities focuse on safety. However, considering the performance of facilities is essential in perspective of the deterioration due to aging this study introduces the future direction of the performance-based maintenance system on assessment of water supply facilities
Performance-based maintenance system is necessary to prepare for social disasters as domestic water supply facilities age. The maintenance methods of domestic Social Overhead Capital(SOC) facilities focuse on safety. However, considering the performance of facilities is essential in perspective of the deterioration due to aging this study introduces the future direction of the performance-based maintenance system on assessment of water supply facilities.