검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 16

        1.
        2025.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        정확한 선박 항적 예측은 선박의 충돌 회피 전략 수립과 자율운항 선박의 안전 운항에 중요한 요소이다. MMG(Maneuvering Modeling Group) 모델이나 CFD(Computational Fluid Dynamics)를 활용하여 선박 항적을 계산할 수 있지만, 계산을 위한 선박의 정확한 계 수등을 확보하는 것은 현실적으로 어렵다. 이에 대한 대안으로, LSTM(Long Short-Term Memory)과 같은 인공지능을 활용한 항적 예측 연 구가 진행되고 있다. 그러나 LSTM 단독으로는 선박의 복잡한 비선형적 움직임을 완벽히 예측하는데 한계가 있다. 예측 정확도를 향상 시키기 위해 본 연구에서는 STL-CNN-LSTM 하이브리드 모델을 제안한다. 이 모델은 STL (Seasonal and Trend decomposition using Loess)을 이용한 데이터를 분해하고, CNN(Convolutional Neural Network)을 활용한 데이터의 특징 추출, 그리고 LSTM을 통한 학습이 이뤄진다. 이 연구는 CNN-LSTM에 비해 얼마나 더 높은 항적 예측도를 보여주는지 비교 분석한다. 분석 결과, STL-CNN-LSTM 모델은 CNN-LSTM보 다 우수한 예측 성능을 보이며, 예측 오차는 1~5미터 범위 내에 있는 것으로 나타났다. 이러한 연구 결과는 정밀한 충돌 회피 전략 개 발에 기여할 수 있으며, 향후 연구에서는 실무 적용을 위한 충돌회피 모델의 설계 고도화 연구에 적용될 것이다.
        4,000원
        16.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        컴퓨터 비젼을 이용한 항행선박의 항적을 계산하고 교통량을 측정하는 방법은 해양사고의 예방관점에서 사고발생 가능성 여부를 예측해 볼 수 있는 유용한 방법이다. 본 연구에서는 컴퓨터 비젼을 이용하여 영상축소, 미분연산자, 최대 최소값 등을 이용하여 선박을 인식한 후 실세계 상에서의 좌표 값을 계산하여 실시간 항적을 전자 해도에 표시함으로서 해상 구조물과의 충돌여부를 직접 육안으로 확인 할 수 있는 알고리즘을 개발하였다. 본 연구에서 개발된 알고리즘은 영역 정보를 기반으로 개발되었기 때문에 점 정보에 의존하고 있는 기존 레이더 시스템의 단점을 보완하는 장점을 지니고 있다.
        4,000원