PURPOSES : The purpose of this study is to establish a scientific and rational structure pavement maintenance technique and management standard through field investigation and analysis method development for measuring damage to structure pavement such that fundamental quality improvement can be promoted and the life of pavement prolonged. METHODS : In this study, the crack, plastic deformation, IRI, and SPI values measured using the existing RoadScanner of a corresponding section, as well as the relative dielectric constant values of a lower deck measured using a ground penetrating radar are reduced. The results of a small impact load test are verified by comparing the modulus of elasticity measured. RESULTS : In the Hongjecheon Overpass, when comparing the suspicion points of deterioration between the center of the lane and the 25 measurement data points of the wheel pass section based on the elastic modulus of the light falling weight deflectometer (LFWD), it is discovered that the lane comprises four centers (16%) and 18 wheelpaths (72%). The percentage of suspected deterioration points in the center is higher than that in the wheelpath. In addition, in the case of the Seoho Bridge, by comparing the suspicious points of deterioration for 11 measurement data points in the middle of the lane and the wheelpath section based on the elastic modulus of the LFWD, it is discovered that five points (45%) in both the middle of the lane and the wheel pass are similar. CONCLUSIONS : In this study, a comparative analysis of the LFWD elastic modulus and SPI factors (crack rate, plastic deformation, and IRI) of the Hongjecheon Overpass and Seoho Bridge is conducted to confirm the factors of pavement breakage. Among them, it is confirmed that it affects the pavement condition the most; however, to consider the LFWD elastic modulus as an evaluation criterion for future structure pavement, the data points must be verified via additional experiments to ensure high reliability.
현재, 포장시스템의 노상과 보조기층의 다짐관리는 들밀도 시험을 이용한 상대 다짐도와 평판재하시험이 널리 쓰이고 있다. 하지만, 이 두 시험법은 노상과 보조기층의 다짐관리를 평가하기엔 시간과 비용이 많이 소요되며 실측 값을 얻기에도 매우 어렵다. 이에 본 연구에서는 노상과 보조기층 시공 현장에서 다짐관리를 보다 빠르고, 적은 비용으로 측정 할 수 있는 소형충격재하시험들의 비교분석을 실시한 후, LFWD시험을 다짐평가장비로 제안하였다. 또한, 노상과 보조기층의 실내시험 및 현장 시험을 통하여 국내 도로 하부구조 재료 특성에 따른 ELFWD와 상대 다짐도, K30, 설계 MR 값과의 상관관계를 제안하였다.