Researching and estimating the ecological characteristics of target fish species is crucial for fisheries resource management. The results of these estimates significantly influence stock assessments and management reference points such as size limit and closed seasons. Recently, ecological characteristics have been changing due to overfishing, climate change, and marine pollution, making continuous estimation and monitoring essential. This study analyzed the ecological changes in small yellow croaker (Larimichthys polyactis) resources in Korea over 24 years (2000-2023) using biological data (growth and gonad traits). By estimating the annual length-weight relationship and length at maturity (L50 and L95), we interpreted the numerical trends of early maturation due to resource depletion. The parameter b of the length-weight relationship, indicating the nutritional status of the resources, showed a slight increase over the years, suggesting relatively good nutritional status (b > 3.0) during most periods. Trend analysis between length at maturity and biomass indicated that as biomass decreased, maturity length also decreased.
전 세계 다양한 국가들을 비롯하여 우리나라도 생물다양성을 보전하기 위한 노력에 동참하고 있다. 특히 생물종과 관련해서는 특정 생물종을 대상으로 서식적합분석을 실시하여 잠재적인 서식 적지를 찾고 보전방안을 수립하는 연구들이 활발하게 수행되고 있다. 그러나 현재까지 축적된 정보를 바탕으로 한 서식적합지역의 중장기 변화에 대한 연구는 미흡한 실정이다. 이에 본 연구는 강원도 지역을 대상으로 멸종위기 야생생물 1급으로 지정된 수달을 대상으로 서식적합지역의 시계열 변화를 분석하고 변화 양상을 살펴보고자 하였다. 시계열 변화 분석을 위해서 약 20년간 수행된 2차, 3차, 4차 전국자연환경조사의 수달 종 출현지점 조사자료를 이용하였다. 또한 각 조사시기 별 서식환경을 반영하기 위해 조사시기와 일치하는 토지피복도를 환경변수 제작에 활용하였다. 서식적합지역 분석을 위해서는 종의 출현 정보만을 바탕으로 모델 구동이 가능하며, 선행연구를 통해 신뢰도가 높다고 입증된 MaxEnt 모형을 사용하였다. 연구결과, 각 조사시기 별 수달의 서식적합지역 지도가 도출되었으며, 하천을 중심으로 서식지가 분포하는 경향이 나타났다. 모델링 결과 도출된 환경변수의 반응곡선을 비교하여 수달이 선호하는 서식지의 특성을 파악하였다. 조사시기 별 서식 적지의 변화를 살펴본 결과, 2차 전국자연환경조사를 기반으로 한 서식 적지가 가장 넓은 분포를 나타냈으며, 3, 4차 조사의 서식 적지는 면적이 줄어드는 경향을 나타냈다. 또한, 3개 조사시기 분석결과를 종합하여 서식 적지의 변화 양상을 분석하고 유형화하였다. 변화 유형에 따라서 현장조사, 모니터링, 보호지역 설정, 복원계획과 같이 서로 다른 보전계획을 제안하였다. 본 연구는 수달 서식 적지의 위치와 면적의 시계열 변화를 볼 수 있는 종합분석 지도를 제작하고, 지역별 서식 적지 변화 유형에 따라 필요한 보전계획을 제안하였다는 점에서 의의를 갖는다. 본 연구에서 제안된 방법과 결과는 향후 서식지 보전 및 관리 방안 수립을 위한 기초자료로 활용될 수 있을 것으로 사료된다.
Much of the data used in the analysis of environmental ecological data is being obtained over time. If the number of time points is small, the data will not be given enough information, so repeated measurements or multiple survey points data should be used to perform a comprehensive analysis. The method used for that case is longitudinal data analysis or mixed model analysis. However, if the amount of information is sufficient due to the large number of time points, repetitive data are not needed and these data are analyzed using time series analysis technique. In particular, with a large number of data points in the current situation, when we want to predict how each variable affects each other, or what trends will be expected in the future, we should analyze the data using time series analysis techniques. In this study, we introduce univariate time series analysis, intervention time series model, transfer function model, and multivariate time series model and review research papers studied in Korea. We also introduce an error correction model, which can be used to analyze environmental ecological data.
온난화와 같은 전지구적 변화는 기온과 강수 등 기상요소에 직접적으로 반영되어 곡물 수확량의 변화를 가져온다. 기후변화 시나리오에 기초한 선행연구들에서는 GCM (general circulation model)의 공간해상도 문제로 인하여 상세한 모의가 어려웠고, 시계열통계법을 활용한 연구들에서는 기후요소를 통합하여 수확량을 예측한 사례가 매우 드물었다. 이에 본 연구에서는 상세화된 기후재분석자료의 시계열모델링을 통하여 옥수수와 콩의 수확량 예측실험을 수행하였다. 미국 아이오와 주의 99개 카운티를 대상으로 1960년부터 2009년까지 50년간의 고해상도 기후재분석자료와 정부통계 수확량 DB를 구축하고, 시계열통계법인 VAR (vector autoregression)와 ARIMA (autoregressive integrated moving average)를 이용하여 다음해 수확량 예측실험을 10개 연도에 대해 수행하여 예측력을 평가하였다. VAR는 16-18%, ARIMA는 11-14% 의 오차율로 다음해의 수확량을 예측할 수 있는 것으로 집계되었으며, 옥수수의 경우 표토의 산성도, 심토의 점토와 나트륨 함유량 등의 토양특성 이 실제 수확량 및 예측정확도에 영향을 미치는 것으로 나타났다.
표준은 산업발전 및 무역 자유화의 기반이며 사회 · 경제적인 효율을 향상시키는 중요한 수단이다. 표준과 관련된 정책은 국가적인 차원에서 중요한 이슈 중 하나가 되고 있으며, 이에 따라 산업 분야별 한국산업표준 제정과 활용에 대한 분석은 표준과 관련된 연 구에서 중요한 부분이 되고 있다. 본 연구는 분야별 KS 보유 및 제정현황 분석 그리고 열람실적을 이용하여 표준의 활용도 를 분석한다. 먼저 KS의 보유현황을 국가정책적인 이슈와 함께 살펴보고, 세부적으로 KS 제 정현황이 유사한 분야들은 무엇인지 파악하기 위해 다차원 척도법을 이용하여 시각화 및 군 집화를 실시한다. 이후 각 군집별 제정현황이 유사한 분야들의 표준화 제정활동에 영향을 미 치는 결정요인이 무엇인지 가설설정에 따른 회귀분석을 실시한다. 연구결과 자본집약도, 연구개발 그리고 매출액이 표준화 제정활동에 영향을 미치는 것으로 나타났다. 이에 따라 정부 는 자본집약도가 큰 기업들이 표준화 과정에서 선도적 역할을 유도하고, 연구개발에 따른 표 준과 기술특허 등을 정책적으로 연계시키며, 매출액이 큰 기업들이 표준화 활동을 선도하도 록 지원정책을 수립해야 한다. 두 번째로 표준의 활용도를 분석하기 위해, KS 열람실적 데이 터를 사용하며, 각 KS의 제정연도, 형태 분야별 활용도가 어떻게 다른지 기초통계분석과 의 사결정나무를 사용하여 분석을 수행한다. 그 결과 표준의 제정시기가 활용도에 영향을 크게 미치며, 특정 분야와 형태의 KS들은 최근에 제정되었더라도 활용도가 높은 것으로 나타났 다. 이에 따라 열람실적이 낮은 표준들에 대한 홍보 정책과 함께, 표준을 제정할 때 미열람되 는 표준이 적어지도록 활용도를 고려하는 정책을 수립해야 한다.
본 연구는 MODIS 위성영상을 이용하여 광역적으로 진행되고 있는 식물계절학적 특징을 분석하고자 수행하 였다. 위성영상을 이용한 식물계절학적 특징 분석은 현 장 관찰 자료의 분석을 위한 전반적인 식물계절 경향성 및 변동성에 필요한 정보를 제공해 줄 수 있으며, 현장 관찰 값과 광역 식물계절 관측 값의 연결을 통하여 광 역 수준에서 보다 정밀도 높은 식물 계절현상 모니터링 을 가능하게 한다. 본 연구의 기반이 된 MODIS EVI 자료는 Timesat Algorithms의 double logistic function으로 평활화시켜 분석하였다. 제주→남해안→지리산→소백산→설악산 의 위도 분포에 따라 식물계절 시작일은 늦어지는 경향 을 보였다. 그러나 11년간 주요 산림 지역에서의 식물 계절 시작은 해마다 시작일에 다르게 나타나는 연변동 의 특징을 보였다. 변동 자료를 고차다항식으로 변형한 결과, 제주도는 연간 0.38일, 소백산지역은 0.174일 계 절 시작이 늦어지고, 남해안은 0.32일, 지리산은 0.239 일, 설악산 지역은 0.119일 개엽일이 빨라지고 있는 것 으로 나타났다. 우리나라 전체 식물계절 시작 시기의 특징을 공간적 으로 살펴보면, 주요 산림 지역은 늦어지고, 분지나 산 록의 남사면지역에는 빨라지는 것으로 나타났다. 지역적 으로 살펴보면, 제주도의 남서해안 및 북동해안 사면지 역, 동남해안 지역이 빠른 경향을 보였다. 행정구역별 식물계절 시작 시기를 분석한 결과, 2001 년에는 서울과 경기도, 동해안, 남해안, 마산, 창원, 밀양, 대구, 제주도를 중심으로 빠르게 시작되었다. 이는 서울, 경기도, 마산, 창원, 밀양, 대구 등의 도시지역은 도시화 에 따른 기온상승의 영향인 것으로 해석된다. 이 같은 경향은 2005, 2010년에도 같은 경향으로 보이고 있어 도시화가 식물계절 변화에 중요한 영향을 미치고 있는 것으로 해석할 수 있다. 본 연구의 시간적 규모인 10년 이내에서는 기후변동 에 따른 식물계절 현상의 변이성을 잘 나타내었으며, 이 러한 식물계절 모니터링 기법은 30년 이상의 보다 장기 적인 자료를 축적을 통하여 기후변화 양상에 따른 생물 계절 현상 변화와 해석에 중요한 역할을 할 것으로 생 각된다.
한반도에서 측정되고 있는 시계열 지자기 자료에 대해 결측 자료에 대한 복원과 측정 자료에 기반한 예측, 그리고 기관별 관측 자료에 대한 잡음도를 분석하였다. 결측 자료의 복원을 위해 주성분 분석을 통한 최적화 기법과 지구 통계학적 접근에 의한 방법을 적용하고 그 효과를 비교하였다. 주성분 기법은 자료의 주기성을 효율적으로 반영하는 특성을 보였으며, 지구통계학적 방법은 안정적인 복원 능력을 보였다. 관측소 별 잡음도를 파악하기 위해 이천 및 청양에서 동일 기간에 관측한 지자기 자료에 대해 공간적 분산성을 스캐터그램을 이용해 파악하였다. 그 결과 청양 관측소의 자료가 이천 관측소의 자료보다 연속적이며 안정적인 측정이 이루어진 것을 알 수 있었으며, 복원을 위한 크리깅 추정에서도 실제 자료의 추정이 매우 정확하게 이루어졌다. 결측자료의 복원의 경우 20분 이내의 결측 자료에 대해서는 크리깅 기법과 주성분 기법 모두 유사한 결과를 보였으나, 그 이상의 결측에 대한 복원과 지자기 자료의 예측이 필요한 경우에는 주성분 기법을 적용해야 주파수 영역에서의 특성이 실제와 더욱 유사하게 나타났다. 또한 지자기 자료의 예측을 위해서는 주성분 분석이 효율적으로 이용될 수 있음을 파악하였으며, 하루 정도의 지자기장을 예측할 수 있는 것으로 보인다.
본 연구는 부산지역의 먼지 농도와 황사발원지의 기후학적 요소를 주기분석 함으로써 부산지역의 먼지농도 주기에 영향을 주는 기후학적 조건, 특히 황사 발생과의 관련성에 대하여 고찰하였다. 부산지역에서 관측된 먼지 농도 시계열 자료를 이용한 단일스펙트럼분석을 수행한 결과 배출량이나 강수 효과 등에 의해 나타난 일반적인 주기(1년, 7일) 이외에, 상대적으로 3-4년 주기가 우세하게 나타났으며, 먼지 농도와 부산지역의 기상자료 및 황사발원지에서의 풍속과의 교차스펙트럼 분석을 통한 주기 분석을 수행해 본 결과, 3-4년 주기일 때 먼지농도와 풍속, 기압은 양의 상관관계, 기온, 상대습도와는 각각 음의 상관관계가 나타났다. 이는 황사 발생 조건과 잘 부합되는 것으로 나타나, 3-4년의 먼지 농도 주기는 황사의 장거리 수송과 관련이 있는 것으로 판단된다. 또한 황사 발생은 발원지의 지표 상태에 따라 발생빈도가 달라지므로, 여러 기후학적 요소들 중 황사발원지에서의 강수량과의 주기 분석을 수행해 본 결과, 발원지에서의 강수량 그 자체보다는 발원지에서의 가뭄지수(EDI)의 시계열이 우리나라 먼지 농도의 3-4년 주기와 더 연관이 있는 것으로 나타났고 이는 기후학적으로 황사 발원지에서의 지표건조 특성의 변동성과 연관이 있는 것으로 나타났다.
엘니뇨현상과 관련된 해양 아표층 변동성을 조사하기 위해 1980년부터 2004년까지의 적도 해역의 20도 등온선 깊이(Z20)와 난수질량(WWV) 자료를 분석하였다. 주성분 분석, 합성 분석 및 교차상관 분석 결과, 아표층 시계열 자료는 Nino3.4 SST와 유의미한 시간 지연을 가지고 강한 상관성을 보였다. 이 결과는 아표층 해양 변수가 엘니뇨현상에 유용한 예측 인자임을 시사한다. 분석된 결과를 근거로 1996년부터 2004년까지 Nino3.4 SST를 예측하기 위해 신경망 예측 모델을 구성하였다. 해상풍을 입력 자료로 사용하였을 경우 보다 WWV를 적용하였을 때 3개월 이하의 단기 예측을 제외하고 모든 예측 시간에서 더 우수한 예측력을 보였으며, 5-8개월의 예측에 있어서는 기존의 여러 통계 모델 결과보다 예측 성능이 우수함을 확인하였다.
Fluctuation patterns of groundwater level as a factor that reflects the characteristics of groundwater system can be categorized as the various types of aquifer with the time-series data. Time-series data on groundwater level obtained from 115 monitoring wells in Jeju Island were classified according to variation types, which were largely affected by rainfall(Dr), rainfall and pumping(Drp), and unknown cause(De). Analysis results indicate that 106 wells belong to Dr and Drp and the ratio of the wells with the wide range of fluctuation in the western and northern regions was higher than that in the eastern and southern regions. From the results that Drp is relatively higher than Dr in the western region which has the largest agricultural areas, groundwater level fluctuations may be affected significantly due to the intensive agricultural use. Non-parametric trend analysis results for 115 monitoring wells show that the increasing and decreasing trends as the ratio of groundwater levels were 14.8% and 22.6%, respectively, and groundwater levels revealed to be increased in the western, southern and northern regions excluding eastern region. Results of correlation analysis that cross-correlation coefficients and the time lags in the eastern and western regions are relatively high and short, respectively, indicate that the rainfall recharge effect in these regions is relatively larger due to the gentle slope of topography compared to that in the southern and northern regions.
GPD 모형은 수문학 극치확률량 해석에 주로 적용되어 왔다. 극치 통계의 주목적은 드문 사상의 예측이며, 주요 문제점으로는 임계값 또는 임계값 초과치들에 대한 정확한 산정방법이 없어 그 추정이 매우 어렵다는 것이다. 본 연구에서는 임계값 또는 임계값 초과치들을 산정하기 위하여 4가지 방법을 적용하였다. 그 비교를 위하여 GPD 모형에 적용하여 7개의 지속시간(1, 2, 3, 6, 12, 18 및 24시간)과 10개의 재현기간(2, 3, 5, 10, 20
Groundwater recharge characteristics in a fractured granite area, Mt. Geumjeong, Korea. was interpreted using bedrock groundwater and wet-land water data. Time series analysis using autocorreclation, cross-correlation and spectral density was conducted for characterizing water level variation and recharge rate in low water and high water seasons. Autocorrelation analysis using water levels resulted in short delay time with weak linearity and memory. Cross-correlation function from cross-correlation analysis was lower in the low water season than the high water season for the bedrock groundwater. The result of water level decline analysis identified groundwater recharge rate of about 11% in the study area.
본 논문은 비단조적으로 변동하는 시계열자료를 단조적으로 변화하는 구간으로 분할하여 경향성을 분석함으로써 자료의 시변동에 대한 동질성을 향상시키고 그에 따라 경향성 분석기법의 탐지력을 향상시킬 수 있다는 가설을 전제로 하고 있다. 이를 검토하기 위한 기법으로서 시계열자료의 변동경향을 파악하기 위한 필터링 방법으로 LOWESS smoothing을 적용하였고, 시계열자료의 경향성분석은 seasonal Kendall test를 적용하였다. 인위적으로 발생시킨
To identify possible associations with concentrations of ambient air pollutants and daily mortality in Busan, this study assessed the effects of air pollution for the time period 1999-2000. Poisson regression analysis by Generalized Additive Model were conducted considering trend, season, meteorology, and day-of-the-week as confounders in a nonparametric approach. Busan had a 10% increase in mortality in persons aged 65 and older(95% CI : 1.01-1.10) in association with IQR in NO2(lagged 2 days). An increase of NO2(lagged 2days) was associated with a 4% increase in respiratory mortality(CI : 1.02-1.11) and CO(lagged 1 day) showed a 3% increase(CI : 1.00-1.07).
상관계수가 변수간의 선형 상관관계를 나타내듯이 mutual information은 변수간의비선형 상관관계를 나타내준다. 본 논문에서는 mutual information 추정법으로 다변수 핵 미도함수(multivariate kernel density estimator)를 이용한 방법이 여러 time lags값에 대하여 산정 되었다. 많은 수문자료에서 보여지는 비선형 관계를 Mutual Information으로 확인하여 보았고, 또한 Mutual Infor