One of the harmful substances produced by livestock manure is ammonia (NH3), which is emitted at a high rate. Additionally, NH3 reacts with sulfur oxides (SOx) and nitrogen oxides (NOx) in the atmosphere to produce fine particulate matter (PM2.5). However, the management and countermeasures for NH3 in livestock facilities were found to be inadequate. To establish effective measures, an NH3 emission factor that complies with certified methodologies is required. This study calculates the emission factor by monitoring NH3 concentration and ventilation between September 2022 and May 2023 in a mechanically-ventilated enclosed facility. The data measurement was performed in accordance with the VERA test protocol from Europe, and NH3 concentrations were monitored in real-time using photoacoustic spectroscopy measurement equipment. The average NH3 concentrations for Rooms 1, 2, and 3 during the entire period were measured at 0.96 ± 0.39 ppm, 1.20 ± 0.57 ppm, and 1.34 ± 0.71 ppm, respectively, with an overall average of approximately 1.17 ± 0.49 ppm. The average ventilation was recorded at 2,782.0 ± 1,510.4 m³/h, with an average internal temperature of 26.0 ± 1.5 °C and a relative humidity of 63.9 ± 5.2%. The average emission factor per room was calculated as 0.14 ± 0.03 g/day/pig for Room 1, 0.19 ± 0.07 g/day/pig for Room 2, and 0.15 ± 0.05 g/day/pig for Room 3. Ultimately, this study determined the average NH3 emission factor for the weaned pig facility to be 0.16 g/day/ pig.
암모니아는 지구 온난화의 주범인 이산화탄소 배출이 없는 선박용 친환경 연료이다. 그러나 암모니아는 독성가스이면서 동시에 폭발성 및 부식성 가스로서, 선박용으로 사용되려면 누출에 대비한 안전성이 충분히 확보되어야 한다. 본 연구에서는 선박 연 료 준비실에서 암모니아 누출이 발생한 경우, 급․배기구의 위치 변화에 따른 누출 특성에 대하여 해석을 수행하고 환기 거동을 분석 하였다. 누출량은 0.1kg/s로 하고 통풍량은 30 ACH로 하였다. 급기구가 Aft-Top-Stbd, 배기구가 Fwd-Top-Stbd 에 위치 할 경우(Case 1) 가 100 초뒤 평균 암모니아 농도가 가장 높았고 급기구가 Aft-Bottom-Stbd, 배기구가 Fwd-Bottom-Port에 위치하는 경우(Case 14)가 가 장 낮았다. 50초 이후 Case 1은 약 1500ppm 이상의 암모니아 가스가 Aft 쪽으로, Case 14는 Fwd 벽면으로 정체부가 일정하게 나타났 다. 급·배기구 위치와 장비의 배치와 크기에 따라 높이별 암모니아 농도 및 속도가 다르게 분포되고 속도가 상대적으로 느린 부분에 서 정체부가 발생되고 암모니아 농도가 높아졌다. 소량의 암모니아가 10초 동안 0.1kg/s로 누출할 경우 폭발가스의 범위가 높이 1m 정도로 누출 지점 근처에서 형성되어 소량의 암모니아 누출 시 폭발성은 매우 낮았다. 본 연구에서 최적의 급·배기구 위치 조합을 통 해 암모니아 농도를 효과적으로 제어할 수 있음을 확인하였다. 이는 암모니아를 선박 연료로 사용할 때 안전성을 확보하기 위한 설계 기준 마련에 기여할 것으로 기대된다.
본 연구는 8주간의 고강도 동계 훈련 시 L-아르기닌 섭취가 남자 대학 태권도 겨루기 선수의 경기수행능력, 젖산, 젖산탈수소효소 및 암모니아에 미치는 영향을 구명하기 위해 L-아르기닌 섭취군 (n=14), 위약군(n=14)으로 구분하여 실시하였다. L-아르기닌 섭취군은 일일 아침 1 g, 점심 1 g, 저녁 1 g으로 총 3 g 섭취하였고 위약군은 말토덱스트린을 동일한 방법으로 섭취하였다. 8주간의 동계 훈련 프로그램은 70-90%HRR로 실시하였다. 측정된 자료의 L-아르기닌 섭취군과 위약군 간의 그룹 및 시기 간 상 호작용 효과는 two-way repeated measures ANOVA, 그룹 내 시기 간 차이는 paired t-test를 사용하였으 며, 그룹 간 차이는 independent t-test를 사용하여 분석하였다. 그 결과 TAAA (Taekwondo-specific aerobic anaerobic agility) test를 통한 경기수행능력 중 평균 발차기 수에서 그룹×시기 간 상호작용 효과 가 나타났으며 그룹 간 주효과가 나타났다(p<.05). 또한, 발차기 피로지수에서 그룹×시기 간 상호작용 효 과가 나타났다(p<.05). 한편, 젖산에서는 시기 간 주효과가 나타났으며(p<.05) 젖산탈수소효소에서 상호작 용 효과 및 시기 간 주효과 나타났다(p<.05). 암모니아의 경우 그룹×시기 간 상호작용 효과가 나타났다 (p<.05). 이러한 결과는 남자 대학 태권도 겨루기 선수의 고강도 훈련 후 피로에 쉽게 노출되는 선수들에게 L-아르기닌 섭취로 인해 체내 피로 유발 물질들을 신속하게 제거하는 데 긍정적인 역할을 할 수 있다고 사료된다. 따라서 고강도 엘리트 태권도 겨루기 운동선수의 경기수행능력 향상과 피로 회복 방법으로 L- 아르기닌 섭취를 권장한다.
국제해사기구의 온실가스 감축 노력으로, 해운 산업에서는 저탄소 연료로서 액화천연가스와 메탄올, 그리고 무탄소 연료로서 수소와 암모니아가 대두되고 있으며, 환경 친화적인 연료로 평가되고 있다. 특히 암모니아의 경우 화물로써 운반선을 통한 상당 기간의 운항 경험을 보유하고 있으며, 24년 하반기에는 암모니아 선박 엔진이 공급 예정으로, 상용화가 상대적으로 용이한 연료 중 하나로 간주 되고 있다. 그러나 암모니아를 연료로 사용하기 위해서는 독성의 문제점을 극복해야할 필요가 있다. 5ppm 수준의 농도에서 후각으로 판 단이 가능하며, 300ppm 이상을 30분 이상 흡입할 경우 회복이 불가능한 상태에 이를 수 있는 독성물질이다. 화학물질안전원에서 제공하는 KORA 프로그램을 사용하여 암모니아 벙커링시 누설시 발생할 수 있는 위험성에 대하여 평가하였으며, 1분간의 누설로 인해서 반경 약 7.5km에서 5ppm의 영향이 있을 수 있으며 이는 부산시 주요지역에 해당하며, 인체에 치명적일 수 있는 300ppm의 경우 벙커링 인근 인구 밀집지역 및 학교등에 심각한 영향을 미칠 수 있음을 확인할 수 있었다. 따라서 암모니아 벙커링 관련 법제도가 부재한 상태로 작은 누설 에도 광범위한 지역에 독성의 영향이 미칠 수 있기 때문에 지자체, 소방, 환경관서 등과의 유기적인 체계 구축이 마련될 수 있도록 법제 도 개발이 필요하다.
본 연구는 소맥 위주 사료에 xylanase 효소제의 첨가가 육성돈의 사양성적, 영양소 소화율, 혈액성상, 분 중 휘발 성 지방산 및 암모니아성 질소 농도에 미치는 영향을 알 아보기 위하여 실시하였다. 총 192두(4처리, 8반복, 반복당 6두)의 육성돈(25.14±0.11 kg)을 공시하여 xylanase 첨가수 준(0, 0.0125, 0.025, 0.0375%)으로 6주간 사양시험을 실시 하였다. xylanase의 첨가수준이 증가함에 따라 전체 사양 구간에서의 일당증체량(ADG), 일일사료섭취량(ADFI) 및 사료요구율(FCR)이 유의적으로 개선되는 효과를 나타냈 다(p<005). 영양소 소화율에 있어서, xylanase 첨가수준이 증가함에 따라 phase Ⅰ에서는 건물 및 에너지, phase Ⅱ 에서는 조단백질 소화율이 유의적으로 개선되었으며, 또 한 육성돈의 혈중 GLU 농도는 사료 내 xylanase의 첨가 수준이 증가함에 따라 유의적으로 증가하는 효과를 보였 다(p<0.05). 반면에, 휘발성 지방산 및 암모니아성 질소 농 도에서 xylanase의 유의적인 첨가효과는 나타나지 않았다 (p>0.05). 결론적으로, 소맥 위주의 사료 내 xylanase의 첨 가는 육성돈의 사양성적, 영양소 소화율 및 혈중 GLU 농 도를 증가시키는데 긍정적인 효과를 보였으며, 육성돈 사 료내 소맥을 주원료로 사용할 경우 xylanse의 적정 첨가 수준은 0.0375%으로 사료된다.
This study evaluates the ammonia (NH3) reduction effect of Bio-curtains (hereinafter referred to as curtains) utilized for odor control in pig farms based on the distance outside the curtain and the spraying condition. The curtain (total area: 37.9m3) was constructed with two layers of light-shielding screens stretched over a rectangular parallelepiped structure installed around a ventilation fan (630 mm) on the side wall of a pig barn where 48 finishing pigs were reared. The real-time NH3 concentration was measured by using a photoacoustic spectrometer. In the first part of this study, the NH3 measurement position for each side of the curtain was selected based on the lowest standard deviation among 4 to 8 initial sampling points on the surface of the curtain and utilized for both experiments of distance and spraying. In the experiment concerning the distance outside the curtain, ammonia concentration decreased by 17.45% at 2m compared to the distance at 5 cm and by 6.94% at 4m compared to 2m on average. In contrast, the NH3 reduction rate for each distance compared to the ventilation fan was the lowest at the 100% operating rate in which the exhausted NH3 concentration from the ventilation fan was low. At this time, the spraying mist on the inside of the curtain increased the NH3 reduction rate by 4.98 to 10.36% compared to the non-spraying condition. Consequently, the NH3 be reduced as distance outside the curtain increases due to the diffusion effect caused by the surrounding wind and the spraying mist on the inside curtain on the dissolution of NH3.
Public complaints arising from centralized animal manure treatment plants are increasing due to the odors produced during animal manure treatment. Various physico chemical and biological methods are used to mitigate such odors. Still, many problems exist, such as a lack of fundamental data on odor generation characteristics and design standards for odor mitigation facilities. Therefore, this study evaluated the characteristics of NH3 and H2S gas produced from a centralized animal manure treatment plant. The centralized animal manure treatment plant selected in this study has a treatment capacity of 150 tons (animal manure and food waste) per day. The composting matrix was mechanically turned from 9:00 am to 6:00 pm on weekdays and not turned all day on weekends. The NH3 concentrations measured during the day on weekdays (96.4 ± 7.8 ppmv) were about 14% higher than on weekends (84.9 ± 15.9 ppmv). During the week, the ammonia concentration during the day was about 15% higher than at night, but there was no difference between day and night on weekends. The hydrogen sulfide concentration during the day (4,729 ± 3,687 ppbv) on a weekday was about 4.7 times higher than at night (1,007 ± 466 ppbv). The results of this study provide valuable information that is necessary for the operation of odor mitigation facilities. It is expected that the results will contribute to establishing an operational strategy that can reduce the energy required to collect exhaust gas.
This study evaluated the odor mitigation effect of rice husk biochar addition to the bedded pack dairy barn floor using lab-scale reactors for five days. Rice husk biochar mixed with dairy manure and sawdust mixture at different ratios (5%-addition test unit: adding biochar by 5% of the total solid weight of the mixture, 10%-addition test unit: adding biochar by 10% of the total solid weight of the mixture). Cumulative NH3 and H2S emissions of 10%-addition test unit were reduced by 26% (p< 0.05) and 46% (p = 0.0655), respectively, compared with control. However, 5%-addition test unit did not show NH3 and H2S emission reduction. Further research is needed to determine the appropriate level of biochar addition between 5 and 10%, and to evaluate applicability in the field through economic analysis.