검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 196

        2.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Diesel engine has the advantages of strong power, low fuel consumption and good durability, so it has been widely used in transportation, automobile, ship and other fields. However, the nitrogen oxides(NOx) and particulate matter(PM) emitted by diesel engines have become one of the main causes of air pollution. Especially during idling, the engine temperature is low, and there are more residual exhaust gases in the combustion chamber, resulting in the formation of more harmful emissions. In this study, performance of a single cylinder, four-stroke, direct injection (DI) diesel engine fueled with diesel–biodiesel mixtures has been experimentally investigated. The findings show that a remarkable improvement in PM–NOx trade-off can be achieved by burning diesel-bioethanol blend fuels.
        4,000원
        3.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Diesel engine has the advantages of strong power, low fuel consumption and good durability, so it has been widely used in transportation, automobile, ship and other fields. However, the nitrogen oxides(NOx) and particulate matter(PM) emitted by diesel engines have become one of the main causes of air pollution. Especially during idling, the engine temperature is low, and there are more residual exhaust gases in the combustion chamber, resulting in the formation of more harmful emissions. In this study, performance of a single cylinder, four-stroke, direct injection (DI) diesel engine fueled with diesel–biodiesel mixtures has been experimentally investigated.
        4,000원
        4.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the effects of fuel injection pressure changed from 45 to 65 MPa on combustion and emission characteristics were investigated in a common rail direct injection (CRDI) diesel engine fueled with diesel and palm oil biodiesel blends. The engine speed and engine load were controlled at constant 1700rpm and 100Nm, respectively. The tested fuel were PBD20 (20 vol.% palm oil biodiesel blended with 80 vol.% diesel fuel). The main and pilot injection timing was fixed at 3.5°CA BTDC and 27°CA BTDC (before top dead center), respectively. The experimental results show that the combustion pressure and heat release rate increased. In addition, the indicated mean effective pressure (IMEP) and maximum combustion pressure increased with an increase of the fuel injection pressure. Hydrocarbon (HC), smoke opacity and carbon monoxide (CO) decreased, but oxides of nitrogen (NOx) emissions increased as fuel injection pressure increased.
        4,000원
        5.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the combustion characteristics of low calorific gas (LCG) fuels are investigated by numerical simulation. PREMIXED code is used to predict the flame structure and NO emission with two mechanisms, which are GRI 3.0 and USC II chemical reaction mechanisms for CH4 and LCG 8000 and LCG 6000, respectively. Also, elementary reactions related with production and destruction for OH radical are studied because OH radical is dominant for burning velocity and NO emission. As results, the production and the destruction of OH radical for CH4 and LCG 8000 using GRI 3.0 are dominated by reactions of No. 4, No. 2 and No. 3 and by No. 5, No. 3 and No. 7, respectively. For LCG 6000 using USC II, reactions of No. 3, No. 4 and No. 11 and of No. 7, No. 8 and No. 12 dominates to the production and the destruction, respectively. In addition, NO emissions for LCG gas fuel are generated by thermal NO because the flame temperatures are over 1800 K.
        4,000원
        12.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The potential for biodiesel to replace diesel has been explored as an alternative fuel for naturally aspirated indirect injection diesel engines. Overall biodiesel smoke emissions were significantly reduced compared to diesel fuel, which was approximately 36% lower at 2000 rpm, peak load conditions. And torque, power and brake energy consumption did not show much difference. However, compared to diesel fuel, NOx emissions from biodiesel have increased. To combat this problem, an EGR(exhaust gas recirculation) method has been applied to reduce NOx emissions. It was confirmed that simultaneous reduction of NOx and smoke was confirmed by cooling EGR method(10~15%) and biodiesel(20 vol%).
        4,000원
        13.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we investigated the effects of diesel-palm oil biodiesel-ethanol blends on combustion and emission characteristics in a 4-cylinder common rail direct injection (CRDI) diesel engine at low idling operations. The engine speed and engine load was 750 rpm and 40 Nm, while the main and pilot injection timing was respectively fixed at 2 °CA before top dead center (BTDC) and 20 °CA BTDC. The experimental results showed that the cylinder pressure increased with the increasing of palm oil biodiesel ratio from 20% to 100%. In addition, the peak value of cylinder pressure increased by 4.35% compared with pure diesel fuel when 5 vol.% ethanol oil added to diesel oil. Because the palm oil biodiesel and ethanol are the oxygenated fuel, the oxygen content played an important role in improving combustion. Based on the high oxygen content of biodiesel and ethanol, their mixing with diesel fuel effectively reduced PM emissions but increased NOx slightly, while CO and HC had no significant changes.
        4,000원
        14.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the effect of various pilot injection timings on combustion and emission characteristics were investigated in a common-rail direct injection (CRDI) diesle engine fueled with diesel-ethanol blends. The engine speed and engine load were controlled at constant 1500rpm and 70Nm, respectively. The tested fuels were DE0 (pure diesel fuel), DE5 (5 vol.% ethanol blended with 95 vol.% diesel oil), DE10 (10 vol.% ethanol blended with 90 vol.% diesel oil) and DE15 (15 vol.% ethanol blended with 85 vol.% diesel oil). The main injection timing was fixed at 0°CA TDC (top dead center), while various pilot injection timings including 25°CA BTDC (before top dead center), 20°CA BTDC and 10°CA BTDC were selected as the experimental variable. The experimental results showed that various pilot injection timings had little effect on the peak value of cylinder pressure, but had great influence on the start of combustion. The peak value of heat release rate (HHR) increased with the increase of ethanol content. However, the peak value of HRR reduced as the pilot injection is delayed. The diesel fuel containing 10% ethanol had a highest peak value of combustion pressure compared with the others, while the pilot injection timing occurred at 25°CA BTDC. On the other hand, the exhaust emissions of DE10 was also the lowest compared with the others. In addition, with the increase of ethanol content in diesel the PM and NOx emissions reduced.
        4,000원
        15.
        2019.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, to investigate the effect of physical and chemical properties of butanol on the engine performance and combustion characteristics, the coefficient of variations of IMEP (indicated mean effective pressure) and fuel conversion efficiency were obtained by measuring the combustion pressure and the fuel consumption quantity according to the engine load and the mixing ratio of diesel oil and butanol. In addition, the combustion pressure was analyzed to obtain the pressure increasing rate and heat release rate, and then the combustion temperature was calculated using a single zone combustion model. The experimental and analysis results of butanol blending oil were compared with the those of diesel oil under the similar operation conditions to determine the performance of the engine and combustion characteristics. As a result, the combustion stabilities of D.O. and butanol blending oil were good in this experimental range, and the indicated fuel conversion efficiency of butanol blending oil was slightly higher at low load but that of D.O. was higher above medium load. The premixed combustion period of D.O. was almost constant regardless of the load. As the load was lower and the butanol blending ratio was higher, the premixed combustion period of butanol blending oil was longer and the premixed combustion period was almost constant at high load regardless of butanol blending ratio. The average heat release rate was higher with increasing loads; especially as butanol blending ratio was increased at high load, the average heat release rate of butanol blending oil was higher than that of D.O. In addition, the calculated maximum. combustion temperature of butanol blending oil was higher than that of D.O. at all loads.
        4,000원
        20.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 바이오매스로서 코코넛 폐기물을 600℃에서 열분해하여 생성된 수상오일(water soluble oil)을 얻었다. 선박유로 사용되는 MDO(Marine Diesel Oil)와 바이오매스로서 코코넛 폐기물을 열분해하여 생성된 수상오일을 MDO에 15∼20% 까지 혼합 후 유화시켜 제조된 바이오에멀젼 연료의 연소 특성에 대하여 연구 하였다. 엔진 배출가스 및 온도, 출력을 측정하기 위하여 엔진 다이나모메터를 사용하였다. 바이오에멀젼 연료는 수분이 함유되어 있어서 연소실내의 기화잠열을 빼앗아가 배출가스의 온도를 낮춰주는 것으로 나타났다. 바이오에멀젼 연료에 함유된 수분이 연소실내에서 미세폭발을 일으켜 연료를 잘게 쪼개어 주어 매연을 감소시키는 것으로 나타났다. 바이오에멀젼 연료의 사용으로 연소실내의 온도 감소는 질소산화물 배출을 저감하는 것으로 나타났다. 바이오오일 함유량이 증가 하면 수분함량도 증가하여 전체 발열량이 줄어들게 된다. 따라서 출력이 바이오에멀젼 연료 사용량에 비례하여 감소하는 특성을 나타내었다. 선박용 연료로 사용되는 중질유는 매연과 질소산화물을 많이 배출한다. 선박용 연료로 바이오에멀젼 연료를 사용하면 매연과 질소산화물 배출을 줄여줄 수 있을 것으로 기대된다.
        4,300원
        1 2 3 4 5