검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        2.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 해석결과를 보정하여 고층 건축물의 기둥축소 예측값과 실제값 간의 오차를 최소화하기 위한 해석보정법이 제안되었다. 이를 위하여 41층 규모의 철근 콘크리트 건물에 대한 시공단계해석이 수행되었으며, 해석결과는 기둥과 코어로 나뉘어 네 가지의 가정된 계측결과들과 비교되었다. 해석보정은 기둥에서는 오차 한계를 넘어서는 시공단계에서 코어에서는 모든 시공단계에 적용되었으며, 해석이 보정된 이후에도 지속적으로 오차가 발생하므로 해석보정이 자주 수행될수록 오차는 감소하였다. 이러한 과정을 통하여 제안된 해석보정 방법을 적용함으로써 장기적인 축소값이 실제값과 유사하게 예측될 수 있음을 확인하였다.
        4,000원
        3.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study is to investigate the relationship of socioeconomic characteristics and road network structure with traffic growth patterns. The findings is to be used to tweak traffic forecast provided by traditional four step process using relevant socioeconomic and road network data. METHODS: Comprehensive statistical analysis is used to identify key explanatory variables using historical observations on traffic forecast, actual traffic counts and surrounding environments. Based on statistical results, a multiple regression model is developed to predict the effects of socioeconomic and road network attributes on traffic growth patterns. The validation of the proposed model is also performed using a different set of historical data. RESULTS : The statistical analysis results indicate that several socioeconomic characteristics and road network structure cleary affect the tendency of over- and under-estimation of road traffics. Among them, land use is a key factor which is revealed by a factor that traffic forecast for urban road tends to be under-estimated while rural road traffic prediction is generally over-estimated. The model application suggests that tweaking the traffic forecast using the proposed model can reduce the discrepancies between the predicted and actual traffic counts from 30.4% to 21.9%. CONCLUSIONS : Prediction of road traffic growth patterns based on surrounding socioeconomic and road network attributes can help develop the optimal strategy of road construction plan by enhancing reliability of traffic forecast as well as tendency of traffic growth.
        4,000원
        4.
        2007.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        강수는 다양한 대기 변수들의 영향으로 나타나기 때문에 비선형성이 매우 강하다. 따라서 역학 모형을 통해 예측된 강수의 보정은 비선형 모형인 인공 신경망 등을 통해 가능할 것이지만, 인공 신경망의 경우 초기 가중치 선택, 지역 최소화 문제, 뉴런의 수 결정 등의 문제로 인한 한계가 있다. 그러므로 본 연구에서는 가장 보편적으로 사용되는 다중 선형 회귀 모형을 이용하여 CGCM에 의해 모사된 강수를 보정하였으며, 예측성을 살펴보았다. 이를 위하여 우선 PNU/CME 접합 대순환 모형(Coupled General Circulation model, CGCM)(박혜선과 안중배, 2004)을 이용하여 1979년부터 2005년까지 매해 4월부터 8월까지 5개월간 앙상블 적분을 하였다. 적분 결과 중 한반도를 포함한 동북아시아 지역(110˚E-145˚E, 25˚N-55˚N)의 여름철인 6월(리드 2), 7월(리드 3), 8월(리드 4) 및 여름철 평균인 JJA(from June to August) 기간의 PNU/CME CGCM에 의해 모사된 강수를 보정하기 위해 다중 선형 회귀(Multiple Linear Regression, MLR)를 이용하였다. PNU/CME 접합 대순환 모형의 결과 중 강수, 500 hPa 연직 속도, 200 hPa 발산장, 지상 기온 등의 예측 인자와 관측 강수와의 선형적인 관계를 이용하여 MLR 모형을 구축하였다. 그리고 교차 검증(cross- validation)을 수행하여 PNU/CME 접합 대순환 모형의 결과와 교차 검증 결과를 비교하였다. 상관계수, 적중률 (hit rate), 오보율(false alarm rate) 그리고 Heidke 기술 점수(Heidke skill score) 등을 살펴본 바, 보정하지 않은 모형의 결과에 비해 MLR 모형을 이용하여 보정한 결과의 강수에 대한 예측성이 뛰어난 것을 알 수 있었다.
        4,500원
        6.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        In this study, a weighted ensemble method of numerical weather prediction by ensemble models is applied for PyeongChang area. The post-processing method takes into account combination and calibration of forecasts from different numerical models, assigning greater weight to ensemble models that exhibit the better performance. Three different numerical models, including European Center Medium-Range Weather Forecast, Ensemble Prediction System for Global, and Limited Area Ensemble Prediction System, were used to perform the post-processing method. We compared the model outputs from the weighed combination of ensembles with those from the Ensemble Model Output Statistics (EMOS) model for each raw ensemble model. The results showed that the weighted ensemble method can significantly improve the post-processing performance, compared to the raw ensemble method of the numerical models.
        7.
        2017.08 KCI 등재 서비스 종료(열람 제한)
        2014년부터 기상청에서 현업으로 활용하고 있는 전지구 계절예측시스템 GloSea5의 최대 6개월 예측 강수량을 수자원 및 여러 응용분야에 활 용하기 위해서는 예측모델이 가지는 관측자료와의 정량적인 편의를 보정할 필요가 있다. 본 연구에서는 GloSea5의 예측 강수량에서 나타나는 편 의를 보정하기 위해 확률분포형을 활용한 편의보정기법, 매개변수 및 비매개변수적 편의보정기법 등 총 11개의 기법을 활용하여 계절예측모델의 적용성을 평가하고 최적의 편의보정기법을 선정하고자 하였다. 과거재현기간에 대한 편의보정 결과, 비매개변수적 편의보정기법이 다른 기법에 비해 가장 관측자료와 유사하게 보정하는 것으로 분석되었으나 예측기간에 대해서는 상대적으로 많은 이상치를 발생시켰다. 이와는 대조적으로 매개변수적 편의보정기법은 과거재현기간 및 예측기간 모두 안정된 결과를 보여주고 있음을 확인할 수 있었다. 본 연구의 결과는 수자원운영 및 관 리, 수력, 농업 등 계절예측모델을 활용한 여러 응용분야에 적용이 가능할 것으로 기대된다.
        9.
        2015.02 서비스 종료(열람 제한)
        최근 이상기후로 인한 집중호우에 의해 발생하는 도심지에서의 내수침수에 대한 구조적 대책으로 지하방수로가 고려되고 있다. 따라서 국외에 기설치된 지하방수로 사례에서 발생되는 문제인 맨홀 분출사고를 예측하여 적절한 설계를 유도하기 위해서는 관 내부에 갇힌 공기의 압력을 고려한 관 흐름 해석 모형이 필요하다. 지하방수로 내에 급격한 빗물 유입에 따른 유속 증가와 수위변동에 의한 단파 현상이 나타남과 동시에 공기의 부피가 수축되어 관내에 큰 압력이 발생한다. 본 연구에서 급격하게 변화하는 관수로 내의 단파 현상을 재현하기 위해 수치모형을 구축하였다. 기존 연구의 실험결과와의 비교를 통하여 보정 및 검증하고자 하는 것이 본 연구의 목적이다. FVM(Finite Volume Method)을 사용하여 1차원 Saint-Venant 방정식을 이산화하여 대수 방정식으로 변환하고, 이를 Roe Approximate Riemann 수치 기법의 알고리즘을 사용하여 방수로의 동수역학적 거동을 해석하였다. 단파의 발생을 모의하기 위해 불연속점을 다루는 수치기법인 제한자(Limiter)를 활용하였고, 공기의 압력흐름과 개수로의 혼합흐름 해석이 가능한 Preissmann slot model을 적용하였다. 기존의 운동량 방정식에 기체의 압력항을 추가하여 유체와 기체의 흐름을 고려한 수치모의를 수행하여 분출(gushing)현상을 모의하였다. 관수로 내의 단파거동 해석에 적합한 1차원 모형을 개발하였고, 추후에는 지하방수로의 위험 시나리오 관리 시스템을 개발하여 설계 및 시공에 기여하고자 한다.
        10.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        실시간 해수유동 정보를 중심으로 신조선 선박의 실선시운전에서 활용될 수 있는 정보 제공 시스템을 개발하였다. 본 시스템에서 는 실선시운전 지원 정보로서 특정시간 해수유동의 공간분포를 예측하여 제공하며, 특정지점 해수유동의 시계열 변동을 예측하여 제공한다. 또한 본 시스템은 실선시운전에 있어 시험선박 운항경로에서의 해수유동 정보 및 선속 손실정보를 제공하기 위하여 GPS와 연결할 수 있는 기능을 가지고 있으며, 이러한 기능을 이용하여 실선시운전시 자동으로 운항경로상의 해수유동 실시간 정보 및 해수유동에 의한 선속손실을 계산하여 제공한다. 실선시운전 중의 정보 제공 이외에, 본 시스템에서는 특정한 시험시간과 시험경로에 대해 선속손실을 예측하여 제공함으 로써 최적의 시험시간 및 시험경로를 계획할 수 있도록 지원하는 기능도 가지고 있다. 본 연구에서 개발된 실선시운전을 위한 실시간 해수유 동 예측시스템은 효율적인 시험계획과 정확한 해역특성 파악을 지원할 뿐 아니라, 실선에 탑재되어 시험 중에 요구되는 다양한 정보를 제공 한다.
        11.
        2013.08 KCI 등재 서비스 종료(열람 제한)
        분위사상법(QM, Quantile Mapping)은 GCM(Global Climate Model) 자료의 계통적 오차를 보정하여 보다 신뢰성 높은 자료로 재생성하기 위해 활용되고 있다. 이 기법은 사상(mapping)시키려는 대상(object) 자료의 통계분포모수가 정상적(stationarity)이라는 가정 하에 대상 자료의 누적확률분포(CDF, Cumulative Distribution Function)를 목표(target) CDF에 통계적으로 투영시키는 것이 일반적이다. 따라서 GCM에서 제공되는 미래 기후시나리오의 강우시계열과 같이 비정상성(non-stationarity)을 갖는 장기 시계열자료에 대한 적용에는 문제점을 보이고 있다. 본 연구에서는 비정상성을 갖는 장기시계열자료의 오차보정을 위해 통계분포모수에 경향성을 부여하는 비정상성 분위사상법(NSQM, Nonstationary Quantile Mapping)을 적용하였다. NSQM 적용을 위한 확률분포로 수문분야에서 광범위하게 쓰이고 있는 Gamma 분포를 선정하였으며, 대상 시나리오는 CCCma(Canadian Centre for Climate modeling and analysis)에서 제공하고 있는 CGCM3.1/T63모형의 20C3M(reference scenario)과 SRES A2 시나리오(projection scenario)를 활용하였다. 한강유역 내 관측기간이 충분한 10개의 지상관측소로부터 강우량을 수집하였다. 또한 6월과 10월 사이에 연강수량의 65% 이상이 집중되는 한반도의 계절성을 반영하기 위해 홍수기(6∼10월)와 비홍수기(11∼5월)를 구분하였고, 기준기간(Baseline)은 1973∼2000년, 전망기간(Projection)은 2011∼2100년으로 구분하였다. 다양한 목표분포의 설정을 통하여 NSQM의 적용성을 평가하고자 하였으며, 전망기간은 FF시나리오(Foreseeable Future Scenario, 2011∼2040년), MF시나리오(Mid-term Future Scenario, 2041∼2070년), LF시나리오(Long-term Future Scenario, 2071∼2100년)의 3개의 구간으로 설정하여 기준기간과 전망기간의 연평균강우량에 대한 경향성분석을 실시하였다. 그 결과 NSQM이 FF시나리오에서 330.1mm(25.2%), MF시나리오에서 564.5mm(43.1%), LF시나리오에서 634.3mm(48.5%)로 증가하는 전망결과를 나타내고 있었다. 정상성기법을 적용한 결과, 전망기간 중 전체적으로는 동일한 평균값을 갖는 목표통계모수를 사용한다고 하여도, 전망전반부에서 과다하고, 후반부에서 오히려 과소한 전망을 보여주고 있었다. 이러한 결과는 비정상성기법을 사용함으로써 상당부분 개선될 수 있음을 확인하였다.
        12.
        2005.06 KCI 등재 서비스 종료(열람 제한)
        일단위 강우-유출모형인 SSARR모형을 이용하여 한강, 낙동강, 섬진강유역에 월 앙상블 유량예측 시스템을 구축하였다. 우선 SSARR모형의 월 평균 유출량에 대한 모의정확성을 평가한 결과 한강과 낙동강유역에서는 과소추정하는 경향이 뚜렷하였으며, 섬진강유역에서는 모의오차의 분산이 커 정확성 개선이 필요하였다. 최적선형 보정기법을 적용하여 SSARR모형의 모의유량을 보정한 결과, 섬진강을 제외한 한강과 낙동강유역의 검증지점에서는 모의 정확성이 크게 개선되었