The purpose of this study was to determine the effect of contralateral hip adduction (CHA) on thickness of lumbar stabilizers during hip abduction in side-lying. Twenty healthy subjects without back pain were recruited for this study. The thickness of transverse abdominis (TrA), internal oblique (IO) and quadratus lumborum (QL) were measured by ultrasonography. Pelvic lateral tilting motion was measured using a three-dimensional motion analysis system. Measurements were performed at rest position (RP), preferred hip abduction (PHA) and abduction with contralateral hip adduction (CHA) in side-lying at the end of expiration. During the measurements, subjects were asked to maintain steady trunk alignment without hand support. Thickness of TrA and IO was significantly greater in CHA than in PHA and RP conditions. There was no significant difference in thickness of TrA and IO between PHA and RP conditions. Medio-lateral (M-L) thickness of QL was not significant between PHA and CHA conditions. Anterio-posterior (A-P) thickness of QL in PHA and CHA significantly decreased compared to RP condition. Angle of pelvic lateral tilting was significantly decreased in CHA compared to PHA condition. In conclusion, CHA can be recommended for increasing trunk stability without compensatory pelvic motion during hip abduction exercise in side-lying.
The purpose of this study was to compare electromyography (EMG) activity for the middle and lower trapezius muscle according to various shoulder abduction angles. Thirty healthy male subjects were recruited for this study. Each subject performed three repetitions of horizontal abduction at 75˚, 90˚, 125˚, 160˚, and 180˚ of shoulder abduction angle in a prone position. Surface EMG activity was recorded from the middle and lower trapezius while the subjects held for five seconds at a predetermined position. The EMG activity was normalized using the maximal voluntary isometric contraction (MVIC) elicited using a manual muscle testing technique. A repeatedly measured ANOVA was performed by Bonferroni's post hoc test. The EMG activity of the middle and lower trapezius was significantly different among shoulder abduction angles (p<.05). The greatest level of muscle activity for the middle and lower trapezius were demonstrated at and of shoulder abduction angle, respectively. These results suggest that middle and lower trapezius strengthening exercise and manual muscle testing should be performed at different shoulder abduction angles.
The purpose of this study was to compare EMG activity for pectoralis major muscle during shoulder movement with various abduction angle and rotation position in supine position. Fifteen healthy subjects were recruited for this study. All subjects performed shoulder horizontal adduction holding a 2 kg dumbbell in shoulder abduction 40˚, 70˚, 90˚, 130˚, 160˚ with shoulder neutral, internal rotation (IR), and external rotation (ER). Surface EMG activity was recorded from pectoralis major clavicle part and pectoralis major sternum part for 5 seconds and EMG activity was normalized to the value of maximal voluntary isometric contraction (%MVIC). Dependent variables were examined with 3 (Neutral, IR, ER) 5 (40˚, 70˚, 90˚, 130˚, 160˚) analysis of variance with repeated measures. The EMG activity of pectoralis major muscle was significantly different between shoulder abduction angles and between shoulder rotation positions (p<.05). The highest value of EMG activity of pectoralis major clavicle part among shoulder abduction angles was in 70˚ and, 90˚ in that order. The highest value of EMG activity of pectoralis major sternum part among shoulder abduction angles was in and 130˚, 90˚ in that order. According to the rotation degree, shoulder ER showed the highest value and IR showed the lowest value in both muscle parts. These results suggest that shoulder abduction 70˚, 90˚, 130˚ will be effective during manual muscle testing (MMT) and strengthening exercise for pectoralis major muscle. It is also supposed that shoulder ER is the efficient posture for strengthening of pectoralis major muscle.
The purposes of this study were to compare abductor hallucis (AbdH) muscle activity during toe curl exercise according to position of interphalangeal joint (IPJ). Fifteen healthy subjects with neutral foot were recruit for this study. All subjects performed toe curl exercise with towel while maintaining the IPJ in flexion (condition 1) and extension (condition 2). Toe curl exercise with towel was perform three trials for five second periods in each condition. Surface electromyography (EMG) activities were recorded from three muscles (AbdH, tibialis anterior, peroneous longus) in each condition. EMG activity was normalized to the value of maximal voluntary isometric contraction (%MVIC). The EMG activities acoording to position of IPJ were compared using a paired t-test. This study showed that the EMG activity of AbdH during toe curl exercise with IPJ extension significantly increased compared to those during toe curl exercise with IPJ flexion (p<.05). However, the EMG activity of tibialis anterior and peroneus longus were not significantly different between the conditions (p>.05). These results suggest that toe curl exercise with towel must be performed with extension of IPJ in order to strengthen intrinsic muscle in subjects with overuse injuries related to excessive pronation.
Altered scapular kinematics in the scapular joint is commonly believed to be a factor contributing to trunk posture. The purpose of this study was to analyze the muscle activity with several changes of the shoulder angle. Tests were performed on 10 male subjects by repeated measures. Each subject was measured while sitting in both erect and slouched trunk positions. In each sitting posture, a three-dimensional motion analysis measurement was used to measure thoracic angle and shoulder abduction angle. Measurements were taken with the shoulder abdcution angle at , , , , , and . By using surface Electromyography (EMG) electrodes, we recorded the activity of the upper trapezius, middle trapezius, lower trapezius, middle deltoid, and serratus anterior muscle while the subject held a 4 kg weight at each angle. The mean of root mean square (RMS) of EMG activity was calculated. The middle trapezius, lower trapezius, and middle deltoid muscle activity showed significantly higher results but serratus anterior muscle activity showed significantly lower results (p<.05). With the shoulder angle increased, the muscle activity was also significantly increased (p<.05). In conclusion, the thoracic spine posture significantly affects the scapular muscle during scapular plane abduction, and the slouched posture is associated with increased trapezius muscle activity and with decreased serratus anterior muscle activity.