인공위성은 최첨단 기술로써 시공간적 관측제약이 적어 해양 사고에 효과적 대응과 해양 변동 특성 분석 등으로 각국의 국가 기관들이 위성 정보를 활용하고 있다. 하지만 고해상도 위성 관측 기반 해수면 온도 자료(Operational Sea Surface Temperature and Sea Ice Analysis, OSTIA)는 위성의 기기적, 또는 지리적 오류와 구름으로 인해 낮게 관측되거나 공백으로 처리되며 이를 복원하기까지 수 시간이 소요된다. 본 연구는 최신 딥러닝 기반 알고리즘인 LaMa 기법을 활용하여 결측된 OSTIA 자료를 복원하고, 그 성능을 기존에 이용되어 온 세 가지 영상처리 기법들의 성능과 비교하여 평가하였다. 결정계수(R²)와 평균절대오차(MAE) 값을 이용하여 각 기법의 위성 영상 복원 성 능을 평가한 결과, LaMa 알고리즘을 적용하였을 때의 R²과 MAE 값이 각각 0.9 이상, 0.5℃ 이하로, 기존에 사용되어 온 쌍 선형보간법, 쌍 삼차보간법, DeepFill v1 기법을 적용한 것보다 더 우수한 성능을 보였다. 향후에는 현업 위성 자료 제공 시스템에 LaMa 기법을 적용하여 그 가능성을 평가해 보고자 한다.
급격한 기후 변화와 해양 온난화에 의해 지난 수십 년 동안 파고의 변동성이 증가하였다. 상위 1% (또는 5%) 파고와 같은 극한 파고는 국지적인 해역 뿐만 아니라 전 지구 대양에서도 평균 파고에 비해 현저하게 증가하였다. 1991년부터 인공위성 고도계를 활용하여 유의파고를 지속적으로 관측하고 있으며 통계적 기법을 기반으로 100년 빈도 유의파고를 추정하기에 비교적 충분한 자료가 축적되었다. 이어도 해양과학기지에서 유의파고 극값을 추정하기 위하여 2005년부터 2016년까지 위성 고도계 자료를 활용하였다. 대표적인 극값 분석 방법인 Initial distribution Method (IDM) 와 Peak over Threshold (PoT)를 위성 도고계 유의파고 관측 자료에 적용하고 이어도 해양과학기지에서 관측된 실측 자료와 비교하였다. 이어도 해양과학기 관측 자료에 IDM과 PoT 기법을 적용하여 추정된 100년 빈도 유의파고는 각각 8.17 m와 14.11 m이며, 인공위성 고도계 관측 자료를 활용하였을 때는 각각 9.21 m와 16.49 m이었다. 관측 최대값과의 비교 분석에서 IDM을 활용한 분석은 유의파고 극값을 과소추정 하는 경향을 보였다. 이는 IDM 보다 PoT 기법이 유 의파고의 극값을 적절하게 추정하고 있음을 의미한다. PoT 기법의 우수성은 높은 유의파고가 발생하는 태풍의 영향을 받는 이어도 해양과학기지 실측 자료를 활용한 결과에서도 증명되었다. 또한 PoT 기법으로 추정된 유의파고 극값의 안정성은 고도계 자료의 감소에 따라 저하될 수 있음을 확인하였다. 인공위성 고도계 자료를 활용하여 유의파고 극값 추정시 발생할 수 있는 한계점과 인공위성 자료를 검증할 수 있는 자료로써 이어도 해양과학기지 관측 자료의 중요성에 대하여 논의하였다.
지난 수십년 동안 인공위성을 통해 광범위하고 주기적으로 관측된 해수면온도 자료를 사용하여 일별 해수면온도 합성장이 생산되고 있으며 기후변화 감시와 해양 대기 예측 등 다양한 목적으로 활용되어 왔다. 본 연구에서는 지역적인 해역에서 최적화된 활용을 위해 한반도 주변해역에서 해수면온도 합성장 자료의 정확도 평가와 오차 특성 분석을 수행하였다. 2016년 1월부터 12월까지 이어도 해양과학기지 관측 수온 자료를 활용하여 4종의 다중 인공위성 기반 해수면온도 합성장 자료(OSTIA (Operational Sea Surface Temperature and Sea Ice Analysis), OISST (Optimum Interpolation Sea Surface Temperature), CMC (Canadian Meteorological Centre) 해수면온도 및 MURSST (Multi-scale Ultra-high Resolution Sea Surface Temperature))를 비교하여 각 해수면온도 합성장의 정확도를 평가하였다. 이어도 해양과학기지 수온 자료에 대하여 각 해수면온도 합성장은 최소 0.12oC (OISST)와 최대 0.55oC (MURSST)의 편차와 최소 0.77oC (CMC 해수면온도)와 최대 0.96oC (MURSST)의 평균 제곱근 오차를 나타냈다. 해수면온도 합성장 사이의 상호 비교 결과에서는 −0.38-0.38oC의 편차와 0.55-0.82oC의 평균 제곱근 오차의 범위를 보였으며 OSTIA와 CMC 해수 면온도 자료가 가장 작은 오차 특성을 보인 반면 OISST와 MURSST 자료는 가장 큰 오차 특성을 나타내었다. 이어도 해양과학기지와 가장 가까운 지점에서 해수면온도 합성장 자료를 추출하여 시계열을 비교한 결과에서는 이어도 해양과학기지 관측 수온 뿐만 아니라 모든 해수면온도 합성장 자료에서 뚜렷한 계절 변동을 보였으나 봄철 해수면온도 합성장은 이어도 해양과학기지 관측 수온에 비해 과대추정되는 경향이 나타났다.
강수는 기상학, 농업, 수문학, 자연재해, 토목 및 건설 등 분야에서 매우 중요한 기상 변수들 중 하나이다. 최근 이러한 강수를 탐지하고, 측정 및 예보를 하기 위해서 위성원격탐사기술은 필수적이다. 따라서 본 연구에서는 미국항공우주국(National Aeronautics and Space Administration, NASA)에서 발사한 전 지구 강수 관측 위성인 GPM 위성을 기반으로 다양한 자료와 합성된 강수 자료인 IMERG 자료의 정확도를 한반도, 특히 남한지역에 대해 지상관측자료와 비교분석 하였다. 기상자동관측 장비인 AWS의 관측 강수량을 검증 자료로 사용하여, 2016년 1월부터 12월까지 1년간의 기간 동안 한반도의 육상부분에 대하여 IMERG의 월 강수량 자료를 비교 검증하였다. 잘 알려진 대로 위성은 해안가와 섬 지역 같은 부분에서 단점이 있지만, 별도로 비교 분석하였다. 위성 자료인 IMERG와 지상 관측 자료인 AWS를 비교한 결과, 상관계수가 0.95로 높은 상관성을 보였으며, Bias, RMSE의 오차 비교에서도 각각 월 15.08 mm, 월 30.32 mm의 낮은 오차를 산출하였다. 해안지역에서도 육상지역과 마찬가지로 0.7 이상의 높은 상관계수를 산출하며, 강수 자료로서 IMERG의 신뢰도를 검증하였다.
2011년 7월 26일 서울은 장마에 동반된 기록적인 대류성 집중호우로 인해 약 2천5백억 원 이상의 재산피해와 57명(사망자)의 인명손실이 발생되었고, 2012년 8월 27일 15호 태풍 볼라벤에 동반된 집중호우로 광주광역시에는 보다 약한 집중호우와 강풍을 동반하여 피해는 상대적으로 적게 발생시켰다. 위의 사례에 대해 KLAPS(기상청 국지분석 및 예측시스템)을 사용하여 집중호우 시 다른 물리적 요소들에 의한 중규모 과정들의 조사 및 분석을 수행하였다. 이것은 레이더관측과 천리안 위성관측 자료로부터 강우강도를 도출하는데 호조건의 전형적인 중규모 시스템이기 때문에 선택되었으며, 두 사례는 모두 집중호우 발생에 좋은 환경임을 보였다. 2011년 장마에 동반되어 서울에 나타난 사례에서 레이더와 천리안의 정량적인 강우강도를 지상강우계 관측과 비교했을 때, 최대 관측값이 85 mm/hr 이상이 나타난 시점에 비해 약 50 mm/hr 이상이 과소 추정되는 차이가 나타났으나, 레이더 강우강도는 35 mm/hr의 차이와 천리안 강우강도는 60 mm/hr의 차이를 보였다. 그러나 2012년 8월 27일 15호 태풍 볼라벤에 동반되어 광주광역시에 나타난 강우강도와 지상강우강도의 경향은 위의 사례와 유사하게 나타났으며, 정량적인 강우강도 차이는 최대 관측값이 17 mm/hr 이상이 나타난 시점에 비해 약 10 mm/hr 이상이 과소 추정되는 차이가 나타났으나, 레이더 강우강도는 5 mm/hr의 차이와 천리안 강우강도는 10 mm/hr의 차이를 보였다. 이것은 태풍 볼라벤에 의한 집중호우가 상대적으로 약했기 때문이었다. 두 사례에 대해 레이더 강우강도와 천리안 강우강도는 지상강우강도와 시계열적으로 비교했을 때, 모두 유사한 경향을 보였다.
하부 대류권의 대기물현상과 마이크로파 표면 방출율를 전구적으로 조사하기 위하여 1981-93년 기간의 MSU 채널1 밝기온도와 대기대순환 모델(GCM) 재분석 월평균 자료를 사용하였다. 모델재분석 채널1 자료의 평균값이 MSU 채널1 가중함수를 기초로 하여 세 종류의 모델(NCEP ECMWF, GEOS) 재분석에서 온도장을 이용하여 재구성되었다. 모델재분석 채널1 온도는 하부 대류권의 열적 상태를 주로 반영하기 때문에, 해양과 육지에서 계절에 관계없이 각 반구 여름철에 최대값을 나타내었다. MSU 채널1 밝기온도는 해양에서 대기물현상으로 인해 열대 및 남태평양 수렴대들 에서 극대값을 보였다. 또한 이 밝기온도는 빙하/눈 방출율 효과로 인하여 고위도 해양에서 증가하는 반면에, 고위도육지에서는 감소하였다. 열대 및 남태평양 수렴대들의 계절적 이동은 GCM과 MSU 사이의 채널1 온도 차의 분포에서 체계적으로 나타났다. 이러한 온도차의 극소값 위치에서 추정할 때, 열대 수렴대는 가을에 9N까지 북상하였고, 남태평양 수렴대는 북반구 가을과 겨울에 12S까지 남하하였다. 고위도 경우에는 해빙이 각 반구의 겨울에 북반구에서 53N까지 남하하고, 남반구에서는 58S까지 북상하였다 복사전달 결과를 이용하여 MSU 채널1 밝기온도에 대한 대기물현상과 표면 방출율의 부분적인 기여도를 분리하여 조사하였다. ITCZ지역에서 4-6K의 밝기온도 상승은 1-1.5mm/day의 대기물현상 증가에, 그리고 고위도 해양에서의 10-30K의 상승은 0.6-0.9값의 해빙 방출율의 기여에 해당하였다.
강우는 물순환 시스템을 이해를 증가 시킬 뿐만 아니라, 효율적인 수자원 확보 및 관리에 있어서 가장 핵심적인 인자이다. 본 연구는 2015년을 대상으로 한반도에서의 92개의 ASOS 지점자료와 최근에 발사된 GPM 위성강우 자료의 비교를 통하여 활용가능성을 평가하였다. 또한 지점 자료의 장점과 인공위성 자료의 장점을 융합함으로써 보다 개선된 강우자료를 산출하기 위해 3가지의 상세화 방법(Geographical Differential Analysis, Geographical Ratio Analysis, Conditional Merging)들을 적용하였다. 이 연구에서 도출된 결과는 다음과 같다. 1) ASOS 자료와의 검증을 통해 GPM 강우자료가 약간 과대산정되는 편향을 가지고 있는 것을 확인하였으며, 특히 여름 기간에 오차가 높게 발생하는 것으로 나타났다. 2) Jackknife 방법을 통하여 각 합성방법에 대해서 검증하였을 때, 공간해상도가 높아짐에 따라서 오차가 줄어드는 것을 확인하였으며, 상세화 방법 중 conditional merging 방법이 가장 좋은 성능을 나타내었다.
In order to simulate a typhoon precisely, the satellite observation data has been assimilated using WRF (Weather Research and Forecasting model) three-Dimensional Variational (3DVAR) data assimilation system. The observation data used in 3DVAR was GPS Radio Occultation (GPS-RO) data which is loaded on Low-Earth Orbit (LEO) satellite. The refractivity of Earth is deduced by temperature, pressure, and water vapor. GPS-RO data can be obtained with this refractivity when the satellite passes the limb position with respect to its original orbit. In this paper, two typhoon cases were simulated to examine the characteristics of data assimilation. One had been occurred in the Western Pacific from 16 to 25 October, 2015, and the other had affected Korean Peninsula from 22 to 29 August, 2012. In the simulation results, the typhoon track between background (BGR) and assimilation (3DV) run were significantly different when the track appeared to be rapidly change. The surface wind speed showed large difference for the long forecasting time because the GPS-RO data contained much information in the upper level, and it took a time to impact on the surface wind. Along with the modified typhoon track, the differences in the horizontal distribution of accumulated rain rate was remarkable with the range of 600~500 mm. During 7 days, we estimated the characteristics between daily assimilated simulation (3DV) and initial time assimilation (3DV_7). Because 3DV_7 demonstrated the accurate track of typhoon and its meteorological variables, the differences in two experiments have found to be insignificant. Using observed rain rate data at 79 surface observatories, the statistical analysis has been carried on for the evaluation of quantitative improvement. Although all experiments showed underestimated rain amount because of low model resolution (27 km), the reduced Mean Bias and Root-Mean-Square Error were found to be 2.92 mm and 4.53 mm, respectively.
본 연구에서는 GCOM-W1 위성에 탑재된 Advanced Microwave Scanning Radiometer 2 (AMSR2) 센서의 토양수분 자료를 Land Parameter Retrieval Model (LPRM) 알고리즘을 통해 전처리하여 2014년도 한반도 지점관측 자료와의 비교 분석을 수행, 위성 토양수분 자료 의 적합성을 평가하였다. 통계 분석 결과 AMSR2 X-band의 토양수분 자료는 38개의 지점관측 자료와 비교해 0.03의 평균 bias, 0.16의 평균 RMSE의 낮은 오차 수준을 보였으며, 최대상관계수는 0.67로 나타났다. 또한 AMSR2 센서의 ascending, descending 시간대별 위성 토양수분 자료 분석과 X, C1, C2-band의 주파수 영역별 위성 토양수분 자료 분석 결과, ascending overpass time 시간대와, X-band 주파수의 토양수분 자료가 지점 관측 자료와 더 좋은 상관관계를 보였다. 본 연구의 분석 결과는 한반도에서 최근 문제가 되고 있는 가뭄을 비롯한 각종 재해 분석 시 토양수분의 공간적 분포를 연구하는데 활용 될 수 있을 것으로 기대된다.