The purpose of this study is to develop and apply an oil leak detector using a capacitive sensor to detect oil leak in hydraulic equipment. The developed oil leak detector consists of a sensor and a sensing circuit. The sensor is designed using the difference in the permittivity of air and oil to change the capacitance, and the sensing circuit is composed of a charge amplifier and rectifier circuit. The sensing device is made of a PCB module to output the DC analog signal. In this study, this oil detector was installed in a cyclic pressure tester for evaluating valve life and was applied to detect the leakage of the test valve. It can also be applied to detecting the oil leakage of various hydraulic types of equipment and reduce maintenance costs by preventing large leakage of hydraulic oil.
Numerical analysis has been carried out to investigate thermal characteristics for hydraulic system. Overall performance of hydraulic system is largely influenced by oil flow field with heat transfer. Especially thermal characteristics for operating conditions with high oil temperature caused by heavy load and continuous operation are dominant. Oil temperature variation with time in the system is predicted for various flow conditions. Local fluid flow fields at the pipelines, valves, and oil pump in the hydraulic system are considered with thermodynamic and transport properties such as density and viscosity. These results in the study can be applied to the optimal design of hydraulic system.
Our status of off-shore stow-net fishery is in face with many difficult problems; the lack of fisherman by evading the 3-D occupation, the safety accident by unskilled crew and old type fishing system. In order to solve those problems, it is necessary to save the man power and ensure the safety of fishing work by the effective utilization of power and automatization of fishing gear system. This is consists of the side drum driven by main engine, the net hauler, the bow and stern capstan, jib crane etc. Therefore, we suggest the design on unification of power device of fishing gear system as follows; (1) fishing system by uni-hydraulic power and (2) fishing system by electric motor and electro-hydraulic power.
Generally, the three position solenoid valve has veen used for the hydraulic steering gear on account of it’s low cost, simplicity in device, etc. But, there is some off-set because of dead-zone which exists in on-off valves. In this paper, we proposed a combined controller which was added an integral controller to an only on-off one in hydraulic steering gear control system used low speed three position solenoid valve. Experimental results show that the off-set is removed, and the number of valve switching is reduced considerable. The validity of proposed method comparing with an only on-off control was proved by the response experiments.
본 연구의 결과를 요약하면 다음과 같다. (1) 유압 펌프, 유량조절 밸브(오리피스)등을 주된 구성 요소로 하는 구조가 간단하고, 운전.관리가 용이한 유압식 풍력.열 변환 장치를 개발하였다. (2) 실험 결과로부터 본 장치의 에너지 변환 효율이 매우 높음을 확인하였다. (3) 출력 에너지가 열 에너지이므로 온수 탱크를 사용하여 쉽게 에너지를 저장할 수 있음을 실험적으로 확인하였다. (4) 본 장치는 대량 생산되는 유압 부품들만을 사용하여 구성이 가능하므로 매우 저렴한 가격으로, 신뢰성이 우수한 장치를 제작할 수 있다
This study suggests a new type shaft generator driven by hydraulic power suitable for small size vessels. Since the shaft generator system is very easy to be affected by disturbances such as speed variation of the main engine and the load variation of the generator, a robust servo control must be performed to obtain stable electric power with constant frequency. So, in this study the robust servo control method is adopted to the controller design. Dynamic characteristics on the frequency variations of the electric power output according to the disturbances are investigated by computer simulations. From the considerations of the computer simulation results, it is ascertained that the shaft generator system proposed in this study had good control performances.
An electrical power generation system driven by main engine shaft, briefly SG system for middle or small size fishing boat is studied experimently. In the SG system, power transmission is performed by a variable displacement hydraulic pump driven by the main engine and a constant displacement hydraulic motor. It was verified that the SG system enabled the generation of electrical power with constant frequency regardless main engine speed. In the SG system, setting reference frequency, sensing generator output frequency and setting controller parameters are performed by performed by programming in a microcomputer, so a countermeasure for physical situations of control object is very easy. Futhermore, the SG system has following features; low initial installation cost, wide freedom of installation in engine room, advantage of application in existing ships, especially fishing boat with hydraulic fishing equipments.