검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        1.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mill scale, an iron waste, was used to separate magnetite particles for the adsorption of phosphate from aqueous solution. Mill scale has a layered structure composed of wustite (FeO), magnetite (Fe3O4), and hematite (Fe2O3). Because magnetite shows the highest magnetic property among these iron oxides, it can be easily separated from the crushed mill scale particles. Several techniques were employed to characterize the separated particles. Mill scale-derived magnetite particles exhibited a strong uptake affinity to phosphate in a wide pH range of 3-7, with the maximum adsorptive removal of 100%, at the dosage of 1 g/L, pH 3-5. Langmuir isotherm model well described the equilibrium data, exhibiting maximum adsorption capacities for phosphate up to 4.95 and 8.79 mg/g at 298 and 308 K, respectively. From continuous operation of the packed-bed column reactor operated with different EBCT (empty bed contact time) and adsorbent particle size, the breakthrough of phosphate started after 8-22 days of operation. After regeneration of the column reactor with 0.1N NaOH solution, 95-98% of adsorbed phosphate could be detached from the column reactor.
        4,000원
        2.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was carried out to investigate the characterization of iron oxide nanotubes (INTs) by anodization method and applied adsorption isotherms and kinetic models for phosphate adsorption. SEM analysis was conducted to examine the INTs surface formation. Further XRD and XPS analysis were performed to observe the crystal structure of INTs before and after phosphate adsorption. AFM analysis was conducted to determine of Fe foil surface before and after anodization. Phosphate stock solution for adsorption experiment was prepared by KH2PO4. The batch experiment was conducted using 20 ml phosphate stock solution and 40 cm3 of INTs in 50 ml conical tube. Adsorption isotherms were applied Langmuir and Freundlich models for adsorption equilibrium test of INTs. Pseudo first order and pseudo second order models were applied for interpretation of adsorption rate by reaction time. The determination coefficient (R2) values of Langmuir and Freundlich models were 0.9157 and 0.8876 respectively.
        4,000원
        3.
        2016.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Magnetite particles were synthesized by co-precipitation of water-soluble 밀 스케일-derived precursor by various concentrations of (0.5, 0.67, 1, 2 N) NaOH and (0.6, 0.8, 1.2, 2.4 N) NH4OH. It is theoretically known that as the concentration of the alkaline additive used in iron oxide synthesis increases, the particle size distribution of that iron oxide decreases. This trend was observed in both kind of alkaline additive used, NaOH and NH4OH. In addition, the magnetite synthesized in NaOH showed a relatively smaller particle size distribution than magnetite synthesized in NH4OH. Crystalline phase of the synthesized magnetite were determined by X-ray diffraction spectroscopy(XRD). The particles were then used as an adsorbent for phosphate(P) removal. Phosphorus adsorption was found to be more efficient in NaOH-based synthesized magnetite than the NH4OH-based magnetite.
        4,000원
        4.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was carried out for characterization of MIO synthesized in our laboratory by co-precipitation method and applied isotherm and kinetic models for adsorption properties. XRD analysis were conducted to find crystal structure of synthesized MIO. Further SEM and XPS analysis was performed before and after phosphate adsorption, and BET analysis for surface characterization. Phosphate stock solution was prepared by KH2PO4 for characterization of phosphate adsorption, and batch experiment was conducted using 50 ml conical tube. Langmuir and Freundlich models were applied based on adsorption equilibrium test of MIO by initial phosphate solution. Pseudo first order and pseudo second order models were applied for interpretation of kinetic model by temperature. Surface area and pore size of MIO were found 89.6 m2/g and 16 nm respectively. And, the determination coefficient (R2) value of Langmuir model was 0.9779, which was comparatively higher than that of Freundlich isotherm model 0.9340.
        4,000원
        5.
        2015.05 구독 인증기관·개인회원 무료
        분리막 생물반응기(MBR)는 전통적인 수처리 방법과 비교하여 안정적인 수질확보, 처리부지 감소, 높은 유기물 제거 등의 장점으로 인하여 매우 널리 사용되고 있다. 그러나 긴 고형물 체류시간과 높은 미생물 농도로 인하여 종종 인제거에 제한이 있다. 전통적으로 인을 제거하기 위해 화학적 침전 방법이 가장 널리 사용되고 있으나 이는 과량의 응집제 주입으로 인한 비용 문제 및 대량의 슬러지 발생의 한계점을 가지고 있다. 반면 흡착공정은 상대적으로 운전이 쉽고 간단하며 슬러지 발생량을 현저히 줄일 수 있는 방법이다. 따라서 본 연구에서는 입상 금속산화물 흡착제를 개발하고 이를 이용하여 MBR처리수 내의 인을 제거하는데 적용하고 성능을 평가하였다. 본 연구는 환경부의 연구비(과제번호 2013001390002)를 지원받아 진행되었습니다.