As environmental concerns escalate, the increase in recycling of aluminum scrap is notable within the aluminum alloy production sector. Precise control of essential components such as Al, Cu, and Si is crucial in aluminum alloy production. However, recycled metal products comprise various metal components, leading to inherent uncertainty in component concentrations. Thus, meticulous determination of input quantities of recycled metal products is necessary to adjust the composition ratio of components. This study proposes a stable input determination heuristic algorithm considering the uncertainty arising from utilizing recycled metal products. The objective is to minimize total costs while satisfying the desired component ratio in aluminum manufacturing processes. The proposed algorithm is designed to handle increased complexity due to introduced uncertainty. Validation of the proposed heuristic algorithm's effectiveness is conducted by comparing its performance with an algorithm mimicking the input determination method used in the field. The proposed heuristic algorithm demonstrates superior results compared to the field-mimicking algorithm and is anticipated to serve as a useful tool for decision-making in realistic scenarios.
PURPOSES : In this study, the applicability of the water content, suction, and suction stress in a resilient modulus prediction model for a subbase was reviewed. METHODS : To compare the applicability of water content, suction, and suction stress models for resilient modulus prediction, the suction stress was determined based on the soil water characteristic curve. The model parameters for each approach were derived from the measured resilient moduli. Finally, the relationships between the degree of saturation and resilient modulus were analyzed using the calculated model parameters. RESULTS : Prediction models of the resilient modulus based on water content and suction demonstrated high correlation with measured values, but overestimated the resilient modulus at saturation levels beyond the laboratory testing range. In contrast, the model accounting for suction stress effectively reduced this overestimation, likely owing to a decrease in suction stress as the suction increased. CONCLUSIONS : Based on the above results, the resilient modulus of subbase materials could be estimated through the change in the degree of saturation and the stress-dependent resilient modulus model using the suction stress proposed in this study.
과학과 기술의 발달로 복합재료, 합금, 고강도 탄소섬유, 고분자 재료 등 지능형 소재가 개발되고 있다. 다양한 엔지 니어링 분야에서 이러한 첨단 재료의 응용을 연구하기 위해 전 세계적으로 광범위한 연구가 진행되고 있다. 초탄성 형상기억합 금(SSMA)은 깃발 모양의 히스테리시스 거동을 가지며 추가적인 열처리 없이 응력 완화로 인한 잔류 변형이 거의 없는 신뢰성 이 높은 내진 재료이다. 그러나 공학 문제에서 SSMA 효율성을 연구하기 위한 수치 모델의 개발은 여전히 어려운 작업이다. 본 연구에서는 SSMA 인장시험의 실험결과를 통해 유한요소해석 프로그램인 Abaqus와 수치해석 프로그램인 OpenSEES를 이용하여 재료 모델을 구현한 후 해석결과의 거동 특성 및 에너지 소산을 분석하였다.
국내 주요 사회기반시설의 70% 이상이 철근콘크리트 구조물로 구성되어 있다. 최근 다양한 사회적ㆍ환경적 변화로 인한 내하력 저하 및 노후화 진행이 발생됨에 따라 섬유강화 복합소재(FRP)를 활용한 유지보수 수요 및 비용이 급격히 증가되 고 있다. 이에 따라 보다 경제적이고 효율적으로 FRP 보강재를 활용함에 있어서 성능을 예측할 수 있는 방법이 요구된다. 본 연구에서는 CFRPㆍBFRP 복합재료를 실험 대상으로 선정하고 성능을 결정하는 주요 인자인 섬유/수지 함침률을 54.3%, 43.9%, 39% 3가지로 분류하여 성능을 평가하고 이를 활용하여 FRP의 성능을 예측할 수 있는 모델식을 개발하고자 하였다. 매개변수에 따른 성능평가 결과, 두 섬유 모두 함침률이 낮아질수록 재료성능 또한 감소되는 것이 확인되었으며, 특히 BFRP의 경우 39%의 함침률에서 감소폭이 CFRP 대비 더 큰 것으로 나타났다. 실험 결과와 기존의 예측 모델식과의 성능 비교를 통해 약 15%의 오 차가 나타나는 것을 확인하였으며, 이에 따른 보정계수를 산정하여 예측 모델식을 재정립하였다.
본 연구에서 페리다이나믹 이론 모델을 이용하여 준정적하중과 동적 하중, 균열전파와 분기균열 패턴 그리고 등방성재료, 직교 이방성 재료의 균열 진전 해석 등 다양한 조건을 고려한 전산 시뮬레이션을 수행하여 그 적합성을 검토하였다. 초기 균열은 없지만 중심에 홀이 있는 등방성 재료, 초기 균열이 존재하는 등방성 및 이방성 재료에 대한 전산 시뮬레이션이 수행되었다. 조정 동적 완화 기법이 사용되어 준정적 하중을 모사하였고, 이방성 재료 해석에서는 고전 연속체 역학과 페리다이나믹의 변형률 에너지를 고려한 균질화 방법이 사용되었다. 균열 전파와 분기 균열이 성공적으로 확인되었으며 파괴 거동의 시작과 그 방향 역시 페리다이나믹 이론으로 확인되었다. 페리다이나믹을 균질화 방법을 사용하여 비교적 복잡한 이방성 재료에 적용한 경우 역시 실험 결과 값과 비교하여 검증하였다.
This study investigated the embedded depth of guardrail posts through 3-D soil material model and carried out evaluation of the dynamic performance of guard rail. In order to calculate for embedded depth of sloping ground, displacement of guardrail posts is analyzed according to the embedded depth of experiment variables. Through the static test of guardrail posts, the maximum deflection was found to decrease the interval. By performing the dynamic test using the Bogie Car, that is confirmed the elastic modulus of the soil occuring the maximum deflection. Guardrail posts is considered to need for further reinforcement in the larger slope than the plains. This study researched about maximum displacement and deviation velocity through dynamic performance of guardrail system and conducted analysis about protection performance evaluation of passenger.
A progressive failure analysis procedure for composite laminates is developed in here and in the companion paper. An anisotropic plastic constitutive model for fiber-reinforced composite material, is developed, which is simple and efficient to be implemented into computer program for a predictive analysis procedure of composites. In current development of the constitutive model, an incremental elastic-plastic constitutive model is adopted to represent progressively the nonlinear material behavior of composite materials until a material failure is predicted. An anisotropic initial yield criterion is established that includes the effects of different yield strengths in each material direction, and between tension and compression. Anisotropic work-hardening model and subsequent yield surface are developed to describe material behavior beyond the initial yield under the general loading condition. The current model is implemented into a computer code, which is Predictive Analysis for Composite Structures (PACS), and is presented in the companion paper. The accuracy and efficiency of the anisotropic plastic constitutive model are verified by solving a number of various fiber-reinforced composite laminates with and without geometric discontinuity. The comparisons of the numerical results to the experimental and other numerical results available in the literature indicate the validity and efficiency of the developed model.
PURPOSES: This paper evaluates, using LS/DYNA-3D software, the vehicle impact performance of flexible barriers made of steel WBeam supported by four different types of post configurations. These types include circular post, H-shape post, C-shape post, and square post. METHODS : The post-soil interaction has been investigated according to different impact angles. For this purpose, energy absorption, maximum displacements of post and rail, and occupant risk index of THIV have been compared each other. The three dimensional soil material model, instead of the conventional spring model based on Winkler and p-y curve, has been used to increase the correctness of computational model. RESULTS: It is noted the crash energy absorption has been increased with respect to the increase of impact angle. CONCLUSIONS : In particular, a post with open section(H-shape, C-shape) shows the greater crash energy absorption capability as compared with a post with closed section under the same level of impact conditions.
PURPOSES: The dynamic modulus can be determined by applying the various theories from the Impact Resonance Testing(IRT) Method. The objective of this paper is to determine the best theory to produce the dynamic modulus that has the lowest error as the dynamic modulus data obtained from these theories(Complex Wave equation Resonance Method related to either the transmissibility loss or not, Dynamic Stiffness Resonance Method) compared to the results for dynamic modulus determined by using the Universal Testing Machine. The ultimate object is to develop the predictive model for the dynamic modulus of a Linear Visco-Elastic specimen by using the Complex Wave equation Resonance Method(CWRM) came up for an existing study(S. O. Oyadiji; 1985) and the Optimization. METHODS: At the destructive test which uses the Universal Testing Machine, the dynamic modulus results along with the frequency can be used for determining the sigmoidal master curve function related to the reduced frequency by applying Time-Temperature Superposition Principle. RESULTS: The constant to be solved from Eq. (11) is a value of 14.13. The reduced dynamic modulus obtained from the IRT considering the loss factor related to the impact transmissibility has RMSE of 367.7MPa, MPE of 3.7%. When the predictive dynamic modulus model was applied to determine the master curve, the predictive model has RMSE of 583.5MPa, MPE of 3.5% compared to the destructive test results for the dynamic modulus. CONCLUSIONS: Because we considered that the results obtained from the destructive test had the most highest source credibility in this study, the dynamic modulus data obtained respectively from DSRM, CWRM were compared to the results obtained from the destructive test by using th IRT. At the result, the reduced dynamic modulus derived from DSRM has the most lowest error.
An orthotropic plastic constitutive model for fiber-reinforced composite material, is developed, which is simple and efficient to be implemented into computer program for a predictive analysis procedure of composite laminates. An orthotropic initial yield criterion, as well as work-hardening model and subsequent yield surface are established that includes the effects of different yield strengths in each material direction, and between tension and compression. The current model is implemented into a computer code, which is Predictive Analysis for Composite Structures (PACS). The accuracy and efficiency of the anisotropic plastic constitutive model and the computer program PACS are verified by solving a number of various fiber-reinforced composite laminates. The comparisons of the numerical results to the experimental and other numerical results available in the literature indicate the validity and efficiency of the developed model.
PURPOSES: This paper evaluates, using LS/DYNA-3D software, the vehicle impact performance of flexible barriers made of steel WBeam supported by four different types of post configurations. These types include circular post, H-shape post, C-shape post, and square post. METHODS : The post-soil interaction has been investigated according to different impact angles. For this purpose, energy absorption, maximum displacements of post and rail, and occupant risk index of THIV have been compared each other. The three dimensional soil material model, instead of the conventional spring model based on Winkler and p-y curve, has been used to increase the correctness of computational model. RESULTS: It is noted the crash energy absorption has been increased with respect to the increase of impact angle. CONCLUSIONS : In particular, a post with open section(H-shape, C-shape) shows the greater crash energy absorption capability as compared with a post with closed section under the same level of impact conditions.
본 연구에서는 하위 요소로(sub-element) 구성된 3차원 대칭 단위 요소들로 조합된 트러스 격자 구조물의 연속적 인 물성치를 제안하였다. 개별적인 트러스 격자 물성치는 균질화 작업을 통하여 유효한 응력과 변형률 관계로 이 루어진 연속적인 물성치 모델로 나타낼 수 있다. 미시적인 규모(micro scale) 스트럿의 인장이나 압축 응답에 의 한 축강성은 전체 격자재료의 대부분의 강도를 차지하고, 이러한 스트럿의 부피 분율(fraction)은 효과적인 강도 뿐만 아니라 복제 가능한 단위 요소로 이루어진 격자판의 상대밀도에 큰 영향을 주었다. 그러므로 균질한 강성부 재로 구성된 연속적인 구성모델은 미시적인 규모로 간주되는 스트럿의 강도, 내부응력 상태 및 부피 분율과 관련 된 역학적인 특성들을 포함하고 있다는 것을 확인할 수 있었다. 미시적인 규모의 응력에서 소성흐름은 균질한 구 성식에서 파생된 거시적인 규모에서의 (macro-scale)응력 표면에 있는 연속적인 응력함수의 영역을 확장한다. 따 라서 본 연구를 통하여 3차원 대칭 단위요소 구조물의 기본 기하학을 조사하고 압력에 의존적인 마크로 규모에서 의 (macro-scale) 응력함수를 예측하는 연속적인 소성모델을 공식화하였다.
본 연구에서는 입자강화 복합재료(particle-reinforced composites)의 거동을 예측하기 위하여 Lee and Pyo(2007)에 의해 제안된 계면손상을 고려한 복합재료의 미세역학 탄성모델과 Karihaloo and Fu(1989)의 미세균열 생성모델을 결합하여, 보강입자의 계면손상(imperfect interface)과 기지 내 미세균열을 고려하여 탄성구성모델(constitutive model)의 거동해석을 수행하였다. 제안된 탄성구성모델의 적용성 검증과 주요손상변수가 거동예측에 미치는 영향을 알아보기 위해 일축 하중 하에서의 응력-변형률 관계를 수치적으로 나타내었다. 또한, 기존의 관련 실험결과와 본 해석결과와의 비교를 통하여 제안된 모델의 정확도를 검증하였다.
본 연구에서는 판 구조물의 최적위상을 찾기 위한 비대칭 층을 가지는 인공재료모델을 이용한 위상최적화기법을 제시하였다. 구절점 판요소를 형성하기 위하여 판의 일차전단변형을 고려하는 Reissner-Mindlin 판이론이 도입되었다. 최소화하고자 하는 변형에너지를 목적함수로 하고 구조물의 초기부피를 제약함수로 채택하였다 인공재료모델에 존재하는 다공성물질의 구멍의 크기를 조절하기 위하여 최적정기준법을 바탕으로 하는 크기조절알고리듬을 도입하였다. 제시된 위상최적화 기법의 성능을 조사하기 위하여 수치예제를 수행하였다. 수치해석결과로부터 제시된 위상최적화기법은 판구조물의 최적위상을 도출하는데 매우 효과적인 것으로 나타났다. 특히 제시된 비대칭 층모델은 판구조물의 보강재를 보다 실제적으로 도출하는데 유용할 것으로 나타났다.
보조기층 재료의 변형특성은 역학적 포장설계에 있어서 대단히 중요한 입력변수이다 국내에서 사용되는 보조기층 재료는 대부분 입상의 자갈질 흙으로서, 실제 시공현장에서 7종의 시료를 채취하였다. 보조기층 재료의 변형특성 평가를 위하여 공진주/비틂전단시험 삼축압축시험,자유단공진주시험을수행하여 탄성계수에 대한 여러 영향요소를 검토하였다. 보조기층 재료의 탄성계수에 대한 하중주파수 및 하중반복횟수의 영향은 매우 작은 것으로 평가되었으며 공학적 관점에서 무시가능 할 것으로 생각된다 보조기층 재료의 탄성계수는 구속응력과 변형률 크기에 대단히 큰 영향을 받는 것으로 나타났고, 대표적인 정규화탄성계수 감소곡선과 구성모델을 제안하였다.
It was general that WSD, USD, LSD etc. used in old do not consider area situation of each country and environment differences. But if concept of PBD which is supplement shortcoming of old design method and optimized design is introduced construction could be designed economical and plan systematically. It is purposed that this paper informs explanation and present condition for material and construction part of Asia Concrete Model Code. Also PBD design details which is suitable in comprehensive substance will be presented later.
앞의 논문 Part 1 에서 유도한 변분원리를 이용하여 복합재료적충판의 진동해석을 할 수 있는 유한요소해
석 모델을 개발하였다. 이 모델에서는 어느 한 충의 면내 변위와 나머지층 단연의 회전각, 그리고 판 전체의
연직방향처짐을 절점변수로 취하게 되어 n개층으로된 적충판의 경우 2(n+ 1) +1 의 절점 자유도를 갖는다. 따
라서, 판의 주변에서는 한층의 면내변위와 각충단연의 회전각을, 판의 면내에서는 연직방향 처짐을 경계조건
값으로 정의할 수 있다. 이 모델에 의해 개발한 프로그램을 이용하여 각층의 재료특성이 크게 다환 혼종형 복
합재료적충판 (hybrid laminate) 의 고유진동문제를 해석하였다. 탄성이론해 빛 다른 유한요소해석결과와 본
해석결과와의 비교를 통해 제시모델이 기존의 다른 유한요소모델보다 정확함올 예시하였다.