본 연구는 폴리스타렌(PS) 수지의 유화공정 효율성 향상을 위해 저온열분해 회분식 반응기를 이용하여, 단일 PS 수지와 Co 및 Mo 촉매를 각각 첨가한 PS 수지를 반응온도(425, 450, 475℃), 반응 시간(20~80분, 15분 간격), 촉매 농도변화에 따른 PS수지의 액화생성물 전환율을 측정하였다. 최적의 열분해 조건은 반응온도 450℃, 반응시간 35분으로 판단되며, 전환된 액화생성물의 주요 성분은 GC/MS 분석결과 스타이렌 및 벤젠유도체가 대부분으로 나타났다. 생성물은 산업통상자원부에서 고시 한 증류성상 온도에 따라 가스, 가솔린, 등유, 경유, 중유로 분류하여 그 수율을 측정하였다. 그리고 45 0℃ 반응온도에서 촉매 사용에 따른 전환율은 Co 촉매 > Mo 촉매 > 무촉매 순이었으며, 생성물 중 가 스, 등유, 경유수율은 Mo 촉매, 가솔린은 무촉매, 중유는 Co 촉매에서 우수한 것으로 나타났다. Co 및 Mo 촉매 혼합 농도별 전환율 및 열분해 생성물 수율은 Co 촉매 100% 사용 시 가장 우수한 것으로 판 단된다.
본 연구는 폴리프로필렌(PP) 수지의 Co 및 Mo 촉매에 의한 반응시간과 농도변화에 따른 저온열분해 액화특성을 파악하고자 회분식 반응기를 이용하여 특정 온도(425, 450, 475℃)에서의 전환율을 측정하였다. 열분해 시간은 20~80분으로 설정하였고 생성물은 산업통상자원부에서 고시한 증류성상 온도에 따라 가스, 가솔린, 등유, 경유, 중유로 분류하였다. 그리고 450℃ 반응온도에서 촉매 사용에 따른 전환율은 모든 반응시간에 있어 Mo 촉매 > Co 촉매 > 무촉매 순이었다. Co 및 Mo 촉매 농도별 PP 전환율 및 열분해 생성물 수율은 Co:Mo=50:50 혼합시 가장 우수한 것으로 나타났다.
This study was performed to obtain high conversion efficiency of C7H8 using non-thermal plasma and metal-supported catalyst. Adsorption-desorption characteristics of toluene was performed using 4A type (Zeolite) filled in a concentration reactor. Through this test, it was found that the concentration reactor has 0.020 g/g of adsorption capacity (at ambient temperature and pressure) and 3,600 ppm of desorption property at 150℃ (with in 20 min). In case of developed catalyst, toluene decomposition rate of Pd-AO (Pd coated catalyst) was better than Pd/Cu-AO and Pd/Ag-AO (Pd/Ag composite metal catalyst). Developed non-thermal plasma system was obtained flame amplification effect using injection process of desorbed tolune, and 98% of removal efficiency.
This study was performed to obtain high conversion efficiency of NH3 and minimize generation of nitrogen oxides using metal-supported catalyst with Ag : Cu ratio. Through structural analysis of the prepared catalyst with Ag : Cu ratio ((10-x)Ag–xCu (0≤ x ≤6)), it was confirmed that the specific surface area was decrease with increasing metal content. A prepared catalysts showed Type Ⅱ adsorption isotherms regardless of the ratio Ag : Cu of metal content, and crystalline phase of Ag2O, CuO and CuAl2O was observed by XRD analysis. In the low temperature(150∼200 ℃), a conversion efficiency of AC_10 recorded the highest(98%), whereas AC_5 (Ag : Cu = 5 : 5) also showed good conversion efficiency(93.8%). However, in the high temperature range, the amounts of by-products(NO, NO2) formed with AC_5 was lower than that of AC_10. From these results, It is concluded that AC_5 is more environmentally and economically suitable.
2010년 전국적으로 소, 돼지와 같은 동물에 구제역이 발병하였고, 이에 전국에 약 4,800여개의 매몰지가 긴급 조성되고 약 300만 마리의 동물들을 살처분 되었다. 이렇게 조성된 매몰지 내부에서는 가축사체가 부패하는 과정에서 황화수소, 메르캅탄류, 아민류 와 같은 악취물질이 생성되고, 매몰지 이설과정에서 대기 중으로 확산된다. 본 연구에서 는 가축 매몰지 이설과정 중에 발생하는 황 계열 물질을 저온 플라즈마 시스템을 적용하 여 저감하고자 하였다. 특히 플라즈마 시스템에서 상대습도에 따른 황화수소와 다이메틸 다이설파이드(DMDS) 제거량 변화를 실험적으로 확인하였다. 동일한 유입 조건에서 상대 습도가 증가함에 따라 황화수소와 DMDS의 제거율은 증가하였고, 이는 상대습도가 높아 지면서 발생하는 오존량이 증가하였기 때문이었다. 황화수소와 DMDS의 오존 반응식을 깁스 자유에너지로 비교해보면 DMDS의 오존 산화가 더 높은 에너지를 방출하는 것으로 나타나며, 이에 따라 황화수소보다는 DMDS가 먼저 오존에 의해 산화되며 남은 황화수 소는 촉매 층에서 추가 반응하는 것으로 판단된다.
In order to improve the selective oxidation reaction of gaseous ammonia at a low temperature, various types of metal-impregnated activated alumina were prepared, and also physical and chemical properties of the conversion of ammonia were determined. Both types of metal (Cu, Ag) impregnated activated alumina show high conversion rate of ammonia at high temperature (over 300℃). However, at lower temperature (200 ℃), Ag-impregnated catalyst shows the highest conversion rate (93%). In addition, the effects of lattice oxygen of the developed catalyst was studied. Ce-impregnated catalyst showed higher conversion rate than commercial alumina, but also showed lower conversion rate than Ag-impregnated sample. Moreover, 5 vol.% of Ag activation under hydrogen shows the highest conversion rate result. Finally, through high conversion at low temperature, it was considered that the production of NO and NO2, toxic by-products, were effectively inhibited.
본 연구는 VOC 배출원 중 도장, 인쇄 공정에서 주요 발생물질인 톨루엔을 저온 분해할 수 있는 귀금속 팔라듐촉매 개발에 목적을 두고 있다. 팔라듐은 톨루엔 제거에서 활성이 우수하지만 비용이 높다. 따라서 실용성의 방안으로 Pd 담지량의 최소화 비율(0.1~1.0wt%)로 제조한 촉매의 활성을 측정하였다. 그 결과 1.0wt% Pd(R) 촉매가 모든 조건에서 가장 높은 활성을 나타내었다. 이는 SEM 촬영과 XRD 분석을 통해 촉매 제조과정에서 Pd의 담지량 및 소성 분위기에 따른 분산 형태와 연관이 있는 것으로 사료된다.
Combustion of ethanol (EtOH) at low temperatures has been studied using titania- and silica-supported platinum nanocrystallites with different sizes in a wide range of 1~25 nm, to see if EtOH can be used as a clean, alternative fuel, i.e., one that does not emit sulfur oxides, fine particulates and nitrogen oxides, and if the combustion flue gas can be used for directly heating the interior of greenhouses. The results of H2-N2O titration on the supported Pt catalysts with no calcination indicate a metal dispersion of 0.97±0.1, corresponding to ca. 1.2 nm, while the calcination of 0.65% Pt/SiO2 at 600 and 900℃ gives the respective sizes of 13.7 and 24.6 nm when using X-ray diffraction technique, as expected. A comparison of EtOH combustion using Pt/TiO2 and Pt/SiO2 catalysts with the same metal content, dispersion and nanoparticle size discloses that the former is better at all temperatures up to 200℃, suggesting that some acid sites can play a role for the combustion. There is a noticeable difference in the combustion characteristics of EtOH at 80~200℃ between samples of 0.65% Pt/SiO2 consisting of different metal particle sizes; the catalyst with larger platinum nanoparticles shows higher intrinsic activity. Besides the formation of CO2, low-temperature combustion of EtOH can lead to many other pathways that generate undesired byproducts, such as formaldehyde, acetaldehyde, acetic acid, diethyl ether, and ethylene, depending strongly on the catalyst and reaction conditions. A 0.65% Pt/SiO2 catalyst with a Pt crystallite size of 24.6 nm shows stable performances in EtOH combustion at 120℃ even for 12 h, regardless of the space velocity allowed.
The present work has been devoted to the catalytic reduction of N2O by H2 with Pt/SiO2 catalysts at very low temperatures, such as 110oC, and their nanoparticle sizes have been determined by using H2-N2O titration, X-ray diffraction(XRD) and high-resolution transmission electron microscopy(HRTEM) measurements. A sample of 1.72% Pt/SiO2, which had been prepared by an ion exchange method, consisted of almost atomic levels of Pt nanoparticles with 1.16 nm that are very consistent with the HRTEM measurements, while a Pt/SiO2 catalyst possessing the same Pt amount via an incipient wetness technique did 13.5 nm particles as determined by the XRD measurements. These two catalysts showed a noticeable difference in the on-stream deN2O activity maintenance profiles at 110℃. This discrepancy was associated with the nanoparticle sizes, i.e., the Pt/SiO2 catalyst with the smaller particle size was much more active for the N2O reduction. When repeated measurements of the N2O reduction with the 1.16 nm Pt catalyst at 110oC were allowed, the catalyst deactivation occurred, depending somewhat on regeneration excursions.
The formation of ConTiOn+₂ compounds, i.e., CoTiO₃ and Co2TiO₄, in a 5 wt% CoOx/TiO2 catalyst after calcination at different temperatures has been characterized via scanning electron microscopy (SEM), Raman and X-ray photoelectron spectroscopy (XPS) measurements to verify our earlier model associated with Co3O4 nanoparticles present in the catalyst, and laboratory-synthesized ConTiOn+₂ chemicals have been employed to directly measure their activity profiles for CO oxidation at 100˚C. SEM measurements with the synthetic CoTiO₃ and Co2TiO₄ gave the respective tetragonal and rhombohedral morphology structures, in good agreement with the earlier XRD results. Weak Raman peaks at 239, 267 and 336 cm-1 appeared on 5 wt% CoOx/TiO₂ after calcination at 570oC but not on the catalyst calcined at 450˚C, and these peaks were observed for the ConTiOn+₂ compounds, particularly CoTiO3. All samples of the two cobalt titanate possessed O 1s XPS spectra comprised of strong peaks at 530.0±0.1 eV with a shoulder at a 532.2-eV binding energy. The O 1s structure at binding energies near 530.0 eV was shown for a sample of 5 wt% CoOx/TiO₂, irrespective to calcination temperature. The noticeable difference between the catalyst calcined at 450 and 570˚C is the 532.2 eV shoulder which was indicative of the formation of the ConTiOn+₂ compounds in the catalyst. No long-life activity maintenance of the synthetic ConTiOn+₂ compounds for CO oxidation at 100˚C was a good vehicle to strongly support the reason why the supported CoOx catalyst after calcination at 570˚C had been practically inactive for the oxidation reaction in our previous study; consequently, the earlier proposed model for the Co₃O₄ nanoparticles existing with the catalyst following calcination at different temperatures is very consistent with the characterization results and activity measurements with the cobalt titanates.
A (5 wt.%)Mn-(1 wt.%)V2O5/TiO2 catalyst were prepared by co-precipitation method and used for low-temperature selective catalytic reduction (SCR) of NOx with ammonia in the presence of oxygen. The properties of the catalysts were studied by X-ray diffraction (XRD), temperature programmed reduction (TPR) and scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS).
The experimental results showed that (5 wt.%)Mn-(1 wt.%)V2O5/TiO2 catalyst yielded 81% NO conversion at temperature as low as 150℃ and a space velocity of 2,400 h-1. Crystalline phase of Mn2O3 was present at ≥15% Mn on V2O5/TiO2. XRD confirmed the presence of manganese oxide (Mn2O3) at 2θ=32.978°(222). The XRD patterns presented of (5 wt.%)Mn-(1 wt.%)V2O5/TiO2 did not show intense or sharp peaks for manganese oxides and vanadia oxides. The TPR profiles of (5 wt.%)Mn-(1 wt.%)V2O5/TiO2 catalyst showed main reduction peak of a maximum at 595℃.
V2O5/TiO2 catalysts promoted with Mn were prepared and tested for selective catalytic reduction of NOx in NH3. The effects of promoter content, degree of catalyst loading were investigated for NOx activity while changing temperatures, mole ratio, space velocity and O2 concentration. Among the various V2O5 catalysts having different metal loadings, V2O5(1 wt.%) catalyst showed the highest activity(98%) under wide temperature range of 200-250℃. When the V2O5 catalyst was further modified with 5 wt.% Mn as a promoter, the highest activity(90-47%) was obtained over the low temperature windows of 100-200℃. From Mn-V2O5/TiO2, it was found that by addition of 5 wt.% Mn on V2O5/TiO2 catalyst, reduction activity of catalyst was improved, which resulted in the increase of catalytic activity and NOx reduction. According to the results, NOx removal decreased for 10%, but the reaction temperature down to 100℃.