검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13

        1.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the modern industrial period, the introduction of mass production was most important progress in civilization. Die-casting process is one of main methods for mass production in the modern industry. The aluminum die-casting in the mold filling process is very complicated where flow momentum is the high velocity of the liquid metal. Actually, it is almost impossible in complex parts exactly to figure the mold filling performance out with the experimental knowledge. The aluminum die-castings are important processes in the automotive industry to produce the lightweight automobile bodies. Due to this condition, the simulation is going to be more critical role in the design procedure. Simulation can give the best solution of a casting system and also enhance the casting quality. The cost and time savings of the casting layout design are the most advantage of Computer Aided Engineering (CAE).. Generally, the relations of casting conditions such as injection system, gate system, and cooling system should be considered when designing the casting layout. Due to the various relative matters of the above conditions, product defects such as defect extent and location are significantly difference. In this research by using the simulation software (AnyCasting), CAE simulation was conducted with three layout designs to find out the best alternative for the casting layout design of an automotive Oil Pan_BJ3E. In order to apply the simulation results into the production die-casting mold, they were analyzed and compared carefully. Internal porosities which are caused by air entrapments during the filling process were predicted and also the results of three models were compared with the modifications of the gate system and overflows. Internal porosities which are occurred during the solidification process are predicted with the solidification analysis. And also the results of the modified gate system are compared.
        4,000원
        3.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A most important progress in civilization was the introduction of mass production. One of main methods for mass production is die-casting molds. Due to the high velocity of the liquid metal, aluminum die-casting is so complex where flow momentum is critical matter in the mold filling process. Actually in complex parts, it is almost impossible to calculate the exact mold filling performance with using experimental knowledge. To manufacture the lightweight automobile bodies, aluminum die-castings play a definitive role in the automotive part industry. Due to this condition in the design procedure, the simulation is becoming more important. Simulation can make a casting system optimal and also elevate the casting quality with less experiment. The most advantage of using simulation programs is the time and cost saving of the casting layout design. For a die casting mold, generally, the casting layout design should be considered based on the relation among injection system, casting condition, gate system, and cooling system. Also, the extent or the location of product defects was differentiated according to the various relations of the above conditions. In this research, in order to optimize the casting layout design of an automotive Oil Pan_BR2E, Computer Aided Engineering (CAE) simulation was performed with three layout designs by using the simulation software (AnyCasting). The simulation results were analyzed and compared carefully in order to apply them into the production die-casting mold. During the filling process with three models, internal porosities caused by air entrapments were predicted and also compared with the modification of the gate system and overflows. With the solidification analysis, internal porosities occurring during the solidification process were predicted and also compared with the modified gate system.
        4,000원
        4.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This research developed ultra-pressure pump main body by using ductile cast iron FCD500, conducted quantitative analysis on following phenomenon of flow or solidification processing in cast processing for improvement of cast device, after extracting model from cast concluded as follows by brinel hardness test. after selecting the ideal condition of cast and it applied to cast of real product shape, discovered the ideal filling processing under the condition that temperature of molten metal was between 1300℃ and 1280℃. and after finishing filling, solidification was commenced rapidly when percentage of solidification completion was between 40%~50%, at that moment, the termperature was measured 1100℃. moreover under the condition of temperature below 900℃, keeping temperature on the center of parts for a certain period of time brings stability of stabilization of heat in parts and organizational stabilization of ductile cast iron. As the results of the casting method design, it was that the ductile cast parts of pump main body was obtained as the maximum HB of 220 was recorded and good test results were achieved
        4,000원
        5.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For a die casting mold, generally, the casting layout design should be considered based on the relation among injection system, casting condition, gate system, and cooling system. Also, the extent or the location of product defects was differentiated according to the various relations of the above conditions. In this research, in order to optimize the casting layout design of an automotive Oil Pan_DX2E, Computer Aided Engineering (CAE) simulation was performed with two layout designs by using the simulation software (AnyCasting). The simulation results were analyzed and compared carefully in order to apply them into the production die-casting mold. During the filling process with two models, internal porosities caused by air entrapments were predicted and also compared with the modification of the gate system and overflow. With the solidification analysis, internal porosities occurring during the solidification process were predicted and also compared with the modified gate system.
        4,000원
        6.
        2013.10 구독 인증기관 무료, 개인회원 유료
        When manufacturing die casting mold, generally, the casting layout design should be considered based on the relation among injection system, casting condition, gate system, and cooling system. Also, the extent or the location of product defects was differentiated according to the various relations of the above conditions. In this research, in order to optimizing casting layout design of an automobile part (Oil Pan_DX2E) Computer Aided Engineering (CAE) simulation was performed with two layout designs by using the simulation software (AnyCasting). The simulation results were analyzed and compared carefully in order to apply them into the production die-casting mold. During the mold filling with two models, internal porosities caused by air entrap were predicted and also compared by the modification of the gate system and the configuration of overflow. With the solidification analysis, internal porosities caused by the solidification shrinkage were predicted and also compared by the modification of the gate system.
        3,000원
        7.
        2013.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The automotive industry in the research and development cost ratio accounted for high technology coefficient of specialization research and development budget. development and adoption of innovative technologies such as new materials technology, electronics technology, information and communications technology and new production systems is a source of competitive products. because permanent magnets without applying an external magnetic field in the BLDC motor drive system parts for EV can be supplied. it has been used in several areas. permanent magnet in the different kinds of motor parts materials is one of the key components. permanent magnet is a relatively fast rate of technological advances, changes in price is considered the fastest. in this paper, the BLDC motor parts produce by the core making method of casting method moulding analysis. moulding density was measured. As a result, the moulding density is measured 7.2~7.5g/cm2 results were excellent.
        4,000원
        8.
        2013.05 구독 인증기관·개인회원 무료
        When manufacturing die casting mold, generally, the casting layout design should be considered based on the relation among injection system, casting condition, gate system, and cooling system. Also, the extent or the location of product defects was differentiated according to the various relations of the above conditions. In this research, in order to optimizing casting layout design of an automobile part (Oil Pan_DX2E) Computer Aided Engineering (CAE) simulation was performed with two layout designs by using the simulation software (AnyCasting). The simulation results were analyzed and compared carefully in order to apply them into the production die-casting mold. During the mold filling with two models, internal porosities caused by air entrap were predicted and also compared by the modification of the gate system and the configuration of overflow. With the solidification analysis, internal porosities caused by the solidification shrinkage were predicted and also compared by the modification of the gate system.
        9.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        When manufacturing die casting mold, generally, the casting layout design should be considered based on the relation among injection system, casting condition, gate system, and cooling system. Also, the extent or the location of product defects was differentiated according to the various relations of the above conditions. In this research, in order to optimize casting design of an automobile part (Gear Box) Computer Aided Engineering (CAE) was performed by using the simulation software (ZَCast). The simulation results were analyzed and compared with experimental results. During the mold filling, internal porosities caused by air entrap were predicted and reduced remarkably by the modification of the gate system and the configuration of overflow. With the solidification analysis, internal porosities caused by the solidification shrinkage were predicted and reduced by the modification of the gate system. For making a better production dieَcasting tool, cooling systems on several thick areas are proposed in order to reduce internal porosities caused by the solidification shrinkage.
        4,000원
        10.
        2012.10 구독 인증기관 무료, 개인회원 유료
        When manufacturing die casting mold, generally, the casting layout design should be considered based on the relation between injection system, casting condition, gate system, and cooling system. Also, the extent or the location of product defects was differentiated according to the various relations of the above conditions. In this research, in order to optimizing casting design of an automobile part (Gear Box) Computer Aided Engineering (CAE) was performed by using the simulation software (Z-Cast). the simulation results were analyzed and compared with experimental results. During the mold filling, internal porosities caused by air entrap were predicted and reduced remarkably by the modification of the gate system and the configuration of overflow. With the solidification analysis, internal porosities caused by the solidification shrinkage were predicted and reduced by the modification of the gate system. For making a better production die-casting tool, cooling systems on several thick areas are proposed in order to reduce internal porosities caused by the solidification shrinkage.
        4,000원